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The concept of mathematical proof
According to Leibniz (~ 1690)

Necessary truths are identical, some explicitly — these are the first truths or
axioms — others “virtually” or implicitly, and these are the demonstrable
theorems. To demonstrate the latter is to reduce them to identical truths by
analyzing their terms, that is, by defining them. Every demonstration consists in
substituting the definition for the defined, that is, in replacing a (complex) term
by a group of (simpler) terms that is equivalent to it. Thus, the essential
foundation of deduction is the principle of the substitution of equivalents. This is
the supreme and unique principle of Logic, and not the principle of the syllogism,
for the latter [...] is a theorem that is itself proved by means of the former

principle.!

1Couturat, La Logique de Leibniz.



Primitive concepts need further elucidation
According to Godel (1944)

Many symptoms show only too clearly, however, that the primitive concepts need
further elucidation.

It seems reasonable to suspect that it is this incomplete understanding of the
foundations which is responsible for the fact that Mathematical Logic has up to
now remained so far behind the high expectations of Peano and others who (in
accordance with Leibniz's claims) had hoped that it would facilitate theoretical
mathematics to the same extent as the decimal system of numbers has facilitated
numerical computations.

But there is no need to give up hope. Leibniz did not in his writings about the
Characteristica Universalis speak of a Utopian project?

3Godel, “Russell's Mathematical Logic”.



Primitive concepts need further elucidation
According to Godel (1944)

The very existence of the concept of, e.g., ‘class’ constitutes already such an
axiom; since, if one defined, e.g., ‘class’ and ‘e’ to be ‘the concepts satisfying the
axioms’, one would be unable to prove their existence.?

2Godel, “Russell's Mathematical Logic”.



Is the distinction between syntax and semantics necessary?

» Axiom vs Definition:
One can define a concept as 'the concept satisfying the axioms’
An ambiguity still remains because of the undefined terms
» Main Thesis: The distinction between syntax and semantics
is responsible of some foundational issues
yields redundancies and complications
is a consequence of the lack of definition of certain ‘concepts’
» Method:
Organise the objects into a hierarchy of nested n-types / n-categories
Internalise typing judgments by expressing them as truth values, i.e. as
elements of the level —1 of the hierarchy.
Address the junction between syntax and semantics through the act of
definition.



Internal Type Constructors

Syntactic world Semantic world

(_:X): L — B

v

L is the (po)set of symbols that we use to write. It is constructed
dynamically:

x:=y=L(xy)
B is the poset of truth values

v

v

(_: X) maps a symbol x to a truth value (x: X)

v

(x : X) gives conditions for a symbol x to be defined as an element of X.

We can work formally by deriving the logical consequences of (x : X)
An element of X is a symbol x equipped with a proof defy : (x : X)



The fundamental constructors

An inductive construction of n-categories and n-functors

Analysis
(X :CAT,) = - (_:X) : Caro(L,B)
- X(,) : Car,(X°Px X, CAT, 1)

Synthesis
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The fundamental constructors

An inductive construction of n-categories and n-functors

(X:Cat,) = - (_:X) : Caro(L,B)
- X(,) = Car,(XPxX,CAT, 1)
F:Car,(Y,Z) = - (y:Y) = (Fy:2)

S OF(L,L) s [T CAT, (Y(x,y), Z(Fx, Fy))

This definition acquires a meaning as soon as (CAT,_; : CAT,) has been proven

(CAT,1:CAT,) = - (_:CAT,1) : CaATo(L,B)
- Cat,1(, ) : Car,(CAT®; x CAT,_1,CAT,1)



The Definition Process

Assignment, literal equality, and substitution

» We regard the act of definition as a process that introduces a literal equality
between symbols

Writing x := y for x, y : L updates the (po)set of symbols L
x := y should be seen as a proof of the literal equality L(x, y)

» We obtain from the definition of morphisms that a proof of
(_:X):CATo(L,B)

corresponds to:
x:L=(x:X):B
x,y: L= (L(x,y) = B((x: X),(y:X)))
» In particular, x:=y = B((x: X),(y: X))



The meaning of logical rules is to be found in the rules themselves
According to Girard, The meaning of logical rules (1998)

» The definition obtained for truth values is as follows:

(7:CAT 1) = - (_:7) L-B
- 7(, ) ¢ 7Px7T > CAT_14

» The heart of the internalisation of meaning lies in the identification of B
with CAT_;.

» There's some hardcoding to be done here: we first fix some notations and
then check that the poset truth values fits within the hierarchy
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The meaning of logical rules is to be found in the rules themselves
According to Girard, The meaning of logical rules (1998)

» The definition obtained for truth values is as follows:

(r:B) := (_:7) : L->B

» The heart of the internalisation of meaning lies in the identification of B
with CAT_;.

» There's some hardcoding to be done here: we first fix some notations and
then check that the poset truth values fits within the hierarchy



What is Truth?

True is what has a proof

» We set:
(:T):=T7

v

This provides a semantic equivalence, i.e. an equivalence within B:
(:T) =T

> It can not be expressed as such in a type theory.

v

The proof of true, «, is to be seen as the smallest semantic unit here.

v

Here mathematical truth is constructed by definitions only.



Bishop's sets

1985

A set is not an entity which has an ideal existence. A set exists only when it has
been defined.

To define a set we prescribe, at least implicitly, what we (the constructing
intelligence) must do in order to construct an element of the set, and what we
must do to show that two elements of the set are equal.

A similar remark applies to the definition of a function: in order to define a
function from a set A to a set B, we prescribe a finite routine which leads from
an element of A to an element of B, and show that equal elements of A give rise
to equal elements of B.

4Bishop, Constructive Analysis.
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Bishop's sets

1985

A set is not an entity which has an ideal existence. A set exists only when it has
been defined.

To define a set we prescribe, at least implicitly, what we (the constructing
intelligence) must do in order to construct an element of the set, and what we
must do to construct the truth value expressing the equality between each pair of
elements

A similar remark applies to the definition of a function: in order to define a
function from a set A to a set B, we prescribe a finite routine which leads from
an element of A to an element of B, and construct a logical implication from the
truth value expressing the equality between each pair of objects of A to the truth
value expressing the equality between the image pair of objects of B.”

"Bishop, Constructive Analysis.



Bishop's sets

An n-categorical extension

An n-category is not an entity which has an ideal existence. An n-category exists
only when it has been defined.

To define an n-category we prescribe, W, what we (the
constructing intelligence) must do in order to construct an object of the
n-category, and what we must do to construct the n— 1-category of morphisms
between each pair of objects in a natural way.

A similar remark applies to the definition of an n-functor: in order to define an
n-functor from an n-category A to an n-category B, we prescribe a finite routine
which leads from an object of A to an object of B, and construct an n— 1-functor
from the n— 1-category of morphisms between each pair of objects of A to the

n — 1-category of morphisms between the image pair of objects of B, in a natural
way.



A Toy Example

Constructing the Empty Set

» We prove that there is a set with no element (& : SET).

In type theory, there is no way to construct an element of @.
Here, being an element of @& is wrong by definition.

> (7 : @) :L—>B
(x:L)=(x:9@):=1
(x,y:L) = (L(x,y) = B((x:2),(y:9)))
» 3(_, ):oPxz—>B
(x,y:2)=>a(x,y):=T
(x1,%2, 1, y2 : @) = (2°P(x1,y1) x B(x2, y2) = B(8(x1,%),23(y1,2)))
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A Toy Example

Constructing the Empty Set

» We prove that there is a set with no element (& : SET).

In type theory, there is no way to construct an element of @.
Here, being an element of @& is wrong by definition.

> (7 : @) :L—>B
(x:L)=(x:9@):=1
(x,y:L) = (L(x,y) = B((x:2),(y:9)))
» 3(_, ):oPxz—>B
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Godel’s Sentence and The Liar Paradox

both correspond to the same undefinable sentence here

» Because true is defined as provable and B(T, 1) = L, the statements

| am not provable
This sentence is false

both correspond to a fixed point S for the negation
B(_,1):B®->B

thatis: (5:B) x (S < B(S,1))

» N.B. The diagonal argument can not be used because of the contravariance
of the negation

» In Boolean logic, (S:B) < (S < L)u (S < T). We obtain

» N.B. It remains envisionable to construct a framework where a truth value
is equivalent to its own negation.
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Godel’s Sentence and The Liar Paradox

both correspond to the same undefinable sentence here

» Because true is defined as provable and B(T, 1) = L, the statements
| am not provable
This sentence is false

both correspond to a fixed point S for the negation
B(_,1):B®->B

thatis: (S:B)x (S < B(S5,1))

» N.B. The diagonal argument can not be used because of the contravariance
of the negation

» In Boolean logic, (S:B) < (S < L)u (S < T). We obtain
(5:B) x (S < B(S,1)) = 1

» N.B. It remains envisionable to construct a framework where a truth value
is equivalent to its own negation.



Universes and Size Issues
A Hope
» Classical set-theoretic results do not a priori hold in this framework.

» Explicitly specifying the equality relation between elements yield significant
distinctions with ZFC's set theory

» Ex: Cantor-Bernstein's theorem
(X, Y:SET) = (X<Y)x(Y<X)=(X=2Y))

might no longer hold in this framework
At least two of the proofs do no longer hold
One proof involves the construction of a subset as a limit of subsets
But in this framework, the modified equality yields identifications on the
elements of that limit
Hence the resulting set is a quotient of a subset and not a subset anymore
» Quotients behave differently

» Objects of an n-category are not discernable as standalone entities for n >0



Universes and Size Issues
Rethinking the role and the structure of the gradation

» The hope is that there is no threat against the existence of a functor
SET(_, ):SET’ x SET - SET  in CAT
» and more generally,
Cat,(_, ) :CAT® x CAT, - CAT, in CAT 41

» The notion of size is addressed internally by using explicit inter-dimensional
connections — the following inductively defined adjunction within CAT,,,;1:

M, : Car, = I1,CAr,; : I,



Universes and Size Issues
Rethinking the role and the structure of the gradation

» The hope is that there is no threat against the existence of a functor
SET(_, ):CAT (SET’ x SET, SET)
» and more generally,
CAT,(_, ) :CAT,;1 (CAT? x CAT,, CAT))

» The notion of size is addressed internally by using explicit inter-dimensional
connections — the following inductively defined adjunction within CAT,,,;1:

M, : Car, = I1,CAr,; : I,



Objective: A Semantics for (directed) Homotopy Type Theory
(Work in progress)
» The idea is to assign
each judgment with a truth value
each rule with a logical implication
» An interpretation of a deductive system corresponds to a morphism of

(multi)posets
[ ]:3-B

The typing judgments correspond to our typing truth values
> (X Uy x: X)) ((X: CAToorn) = (x: X))

Judgmental equality corresponds to literal equality

The hierarchy of universes

Ug:Up: ... :Un:Upp1t ...
corresponds to the hierarchy

CAToo : CAT o041 ¢ vvr : CAToosn : CATooq g1 © -.n



Thanks!



Small Objects

» An object X : CAT, is r-small if it is equipped with
An object X, : CaT,
An r-equivalence /"' X, - X
> We write X : CAT(") for an r-small objects in CAT,.
We have a notion of r-small functors between r-small objects.
r-small objects, together with r-small functors, form an r + 1-small
n-category CAT,,r) : CATS,HI)
Hence CAT{" has an underlying r + 1-category Cat\”? : CAT, 4y
» Small objects in CAT
0-small categories are categories equipped with an equality relation on the
objects - underlying set of objects.
0-small functors are strict functors.
We obtain a category of small categories and strict functors.
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