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What is constructive algebra?

Constructive algebra: Algebra without nonconstructive principles
(e.g., excluded middle, Zorn’s lemma, ...).

Constructive proofs have computational content. They can be
regarded as programs for proof assistants.

Proof of ∃n ∈ N. φ(n) ⇝ Algorithm to compute n s.t. φ(n)
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Noetherian rings (non-constructive)

Definition 1

A ring A is Noetherian if

∀I0 ≤ I1 ≤ · · · . ∃n. In = In+1 = · · · .

Example 1

1 All fields are Noetherian.

2 Z is Noetherian.

3 Z[X0, X1, . . .] is not Noetherian.

0Z < ⟨12⟩ < ⟨6⟩ < ⟨3⟩ < ⟨1⟩ = Z
0Z[X0,X1,...] < ⟨X0⟩ < ⟨X0, X1⟩ < ⟨X0, X1, X2⟩ < · · ·



α-Noetherian rings Quantitative Hilbert’s basis theorem and Krull dimension Proof Summary

Noetherian rings (Richman–Seidenberg)

Problems:

There are mysterious ideals like {x ∈ Z : (x = 0) ∨ φ}.
⟨2⟩ ≤ ⟨2⟩ ≤ · · ·
(is it ⟨2⟩ forever? or will it be Z at somewhere?).

There are several constructive definition of Noetherianity (Buriola,
Schuster, and Blechschmidt [2023]).
Definition by Richman [1974] and Seidenberg [1974]:

Definition 2

A ring A is Noetherian if

∀I0 ≤ I1 ≤ · · · (f.g.) ∃n. In = In+1.

If I ≤ Z is f.g., we can compute a ∈ Z s.t. I = ⟨a⟩.
We don’t have to wait until In stabilizes.
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Noetherian rings (Jacobsson–Löfwall)

Generalized inductive definition by Jacobsson and Löfwall [1991]:

Definition 3

An ideal I ≤ A is blocked if

∀x ∈ A. (x /∈ I) → (I + ⟨x⟩ is blocked).
A ring A is Noetherian if 0 ≤ A is blocked.

(I prefer ∀x ∈ A. (x ∈ I) ∨ (I + ⟨x⟩ is blocked).)

⟨8⟩ ⟨4⟩ ⟨2⟩

0 ⟨6⟩ ⟨3⟩ Z

⟨10⟩ ⟨5⟩
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Noetherian rings (Coquand–Persson)

Generalized inductive definition by Coquand and Persson [1999]:

Definition 4

A list [x0, . . . , xn−1] ∈ ListA is good if ∃k.xk ∈ ⟨x0, . . . , xk−1⟩.
A list σ ∈ ListA is barred by good if

(σ is good) ∨ (∀x ∈ A. σ.x is barred by good).

A ring is Noetherian if [] is barred by good.

[2] [2, 2]good [2, 2, 1]good

[]Z [2, 3] [2, 3, 1]good

[4] [4, 2] [4, 2, 1] [4, 2, 1, 1]good
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α-Noetherian rings

Definition 5

A list [x0, . . . , xn−1] is (−1)-good (or simply good) if

(n ≥ 1) ∧ xn−1 ∈ ⟨x0, . . . , xn−2⟩.
A list σ ∈ ListA is α-good (α ∈ Ord) if

∀x ∈ A. ∃β ∈ [−1, α). σ.x is β-good.

A ring is α-Noetherian if [] is α-good.

[2]1-good [2, 2]good [2, 2, 1]0-good

[]ω-good [2, 3]0-good [2, 3, 1]good

[4]2-good [4, 2]1-good [4, 2, 1]0-good [4, 2, 1, 1]good

Classically, the notion of α-Noetherian ring is introduced by
Gulliksen [1973] as the length of Noetherian modules.
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Examples of α-Noetherian rings

Example 2

1 Discrete fields (∀x. (x = 0) ∨ (x ∈ K×)) are 1-Noetherian

2 Z is ω-Noetherian.

More generally, we can define α-Euclidean rings and prove that
they are α-Noetherian. (Classically, the notion of α-Euclidean ring
is essentially introduced by Motzkin [1949].)

Definition 6

1 x ∈ A is called (−1)-Euclidean if x = 0.

2 x ∈ A is called α-Euclidean if for every y ∈ A, there exist
β ∈ [−1, α) and β-Euclidean element z ∈ A s.t. z − y ∈ ⟨x⟩.

3 A ring A is called α-Euclidean if for every x ∈ A, there exists
β ∈ [−1, α) s.t. x is β-Euclidean.
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Hilbert’s basis theorem (HBT)

Theorem 7 (Classical HBT)

In classical mathematics, if A is Noetherian, then so is A[X].

Theorem 8 (Coquand–Persson HBT)

If A is Coquand–Persson Noetherian, then so is A[X].

There are also Richman–Seidenberg HBT and Jacobsson–Löfwall
HBT, but those are theorems about

Noetherianity+ (some conditions like coherence),

which are classically equivalent to Noetherianity.
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Quantitative Hilbert’s basis theorem (QHBT)

Theorem 9 (Kuroki [2025])

If A is α-Noetherian, then A[X] is (ω ⊗ α)-Noetherian.

Classically, this is proved by Brookfield [2003].

Corollary 1

1 If K is a discrete field, K[X0, . . . , Xn−1] is ω
n-Noetherian.

2 Z[X0, . . . , Xn−1] is ω
1+n-Noetherian.
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Krull dimension (non-constructive)

Definition 10

We write KdimA < n if

∀p0 ≤ · · · ≤ pn. ∃k. pk = pk+1
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Krull dimension (constructive)

Lombardi [2002] has found the following characterization:

Definition 11

We write KdimA < n if for every x0, . . . , xn−1 ∈ A, there exists
e0, . . . , en−1 ≥ 0 such that

xe00 · · ·xen−1

n−1 ∈ ⟨xe0+1
0 , xe00 xe1+1

1 , . . . , xe00 · · ·xen−2

n−2 x
en−1+1
n−1 ⟩.

As noted by [Lombardi, 2002, Proposition 5.2], this definition is
closely related to the lexicographic order. For more results in this
direction, see Kemper and Trung [2014], Kemper and Yengui
[2020].

Example 3

1 KdimK < 1 for a discrete field K.

2 KdimZ < 2.
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α-Noetherianity and Krull dimension (1/2)

Theorem 12

Let f : [0, α) → A be a function. If A is β-Noetherian for some
β < α, there exist m ∈ N and a strictly decreasing sequence
α0, . . . , αm−1 ∈ [0, β] s.t. [f(α0), . . . , f(αm−1)] is good.

Proof.

Let α0 := β. Then [f(α0)] is α1-good for some α1 ∈ [−1, α0).

1 If α1 = −1, then [f(α0)] is good.

2 If α1 ∈ [0, α0), then [f(α0), f(α1)] is α2-good for some
α2 ∈ [−1, α1)...
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α-Noetherianity and Krull dimension (2/2)

Theorem 13 (Classically proved by Gulliksen [1973])

If A is α-Noetherian for some α < ωn, then KdimA < n.

Proof.

Define f : ωn → A by f(en−1, . . . , e1, e0) := xe00 · · ·xen−1

n−1 .

Corollary 2 (Lombardi [2002], Lombardi and Quitté [2015])

1 If K is a discrete field, KdimK[X0, . . . , Xn−1] < 1 + n.

2 KdimZ[X0, . . . , Xn−1] < 2 + n.
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Transfinite Chomp (1/5)

To prove QHBT, we use a game called (transfinite) chomp
(Huddleston and Shurman [2002]).

(α× β)-chomp:

α

β
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Transfinite Chomp (2/5)

β

α
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Transfinite Chomp (3/5)

β

α
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Transfinite Chomp (4/5)

β

α
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Transfinite Chomp (5/5)

The game ends in a finite number of steps. (Dickson’s lemma)
Sketch of a proof (Huddleston and Shurman [2002]): We can
assign an ordinal sizeP to each position P of the game. Every
time you remove circles, the size decreases.

The size of the initial position is α⊗ β (Hessenberg natural
product).
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Proof of QHBT (1/10)

Assume that A is α-Noetherian (i.e., []A is α-good).

0 1 2 3

ω

α

We prove that [] is β0-good, where

β0 := (size of the above position) = ω ⊗ α.

Suppose someone asks for β1 ∈ [−1, β0) s.t. σ1 := [a1X + a0] is
β1-good.
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Proof of QHBT (2/10): find β1 s.t. σ1 is β1-good

0 1 2 3

ω

α

We received σ1 = [a1X + a0].
We ask for α1 ∈ [−1, α) s.t. [a1]A is α1-good. Let’s say α1 = 1.



α-Noetherian rings Quantitative Hilbert’s basis theorem and Krull dimension Proof Summary

Proof of QHBT (3/10): find β1 s.t. σ1 is β1-good

α1

0 1 2 3

α

ω

We remove the top-right area from the point (1, 1).
Meaning: ∃f0 ∈ ⟨σ1⟩. deg f0 = 1 ∧ [lc f0]A is 1-good.
We prove that σ1 = [a1X + a0] is β1-good, where

β1 := (size of the above position).

Suppose someone asks for β2 ∈ [−1, β1) s.t.
σ2 := [a1X + a0, b2X

2 + b1X + b0] is β2-good.
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Proof of QHBT (4/10): find β2 s.t. σ2 is β2-good

α1

0 1 2 3

α

ω

We received σ2 = [a1X + a0, b2X
2 + b1X + b0].

We ask for α2 ∈ [−1, α1) s.t. [a1, b2]A is α2-good. Let’s say
α2 = 0.
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Proof of QHBT (5/10): find β2 s.t. σ2 is β2-good

α1

α2

0 1

α

ω

We remove the top-right area from the point (2, 0).
Meaning: ∃f0, f1 ∈ ⟨σ2⟩. deg fi = 2 ∧ [lc f0, lc f1]A is 0-good.
We prove that σ2 = [a1X + a0, b2X

2 + · · · ] is β2-good, where
β2 := (size of the above position).

Suppose someone asks for β3 ∈ [−1, β1) s.t.
σ3 := [a1X + a0, b2X

2 + · · · , c0] is β3-good.
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Proof of QHBT (6/10): find β3 s.t. σ3 is β3-good

α1

α2

0 1

α

ω

We received σ3 = [a1X + a0, b2X
2 + · · · , c0].

We ask for α3 ∈ [−1, α) s.t. [c0]A is α3-good. Let’s say α3 = 2.
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Proof of QHBT (7/10): find β3 s.t. σ3 is β3-good

α1

α2

α3

0 1

α

ω

We remove the top-right area from the point (2, 0).
Meaning: ∃f0 ∈ ⟨σ3⟩. deg f0 = 0 ∧ [lc f0]A is 2-good.
We prove that σ3 = [a1X + a0, b2X

2 + · · · , c0] is β3-good, where

β3 := (size of the above position).

Suppose someone asks for β4 ∈ [−1, β3) s.t.
σ4 := [a1X + a0, . . . , d2X

2 + d1X + d0] is β4-good.
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Proof of QHBT (8/10): find β4 s.t. σ4 is β4-good

α1

α2

α3

0 1

α

ω

We received σ4 = [a1X + a0, b2X
2 + · · · , c0, d2X

2 + d1X + d0].
We ask for α4 ∈ [−1, α2) s.t. [b2, d2]A is α4-good.
Then α4 must be −1. Hence d2 ∈ ⟨b2⟩A. Hence
∃g ∈ A[X]. deg g = 1 ∧ (g − (d2X

2 + d1X + d0) ∈ ⟨b2X2 + · · ·⟩).
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Proof of QHBT (9/10): find β4 s.t. σ4 is β4-good

α1

α2

α3

0 1

α

ω

Write g as d′1X + d′0.
We ask for α′

4 ∈ [−1, α1) s.t. [a1, d
′
1]A is α′

4-good...
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Proof of QHBT (10/10)

Reduce the size of the position, reduce the degree of the
polynomial at the end of the list, ...
By repeating this process, we can reduce the degree to −1. (When
the size of the position reduces to 0, we have 1 ∈ ⟨σ⟩.)
Hence []A[X] is (ω ⊗ α)-good.



α-Noetherian rings Quantitative Hilbert’s basis theorem and Krull dimension Proof Summary

Summary and future work

The notion of α-Noetherian ring works well with Krull dimension.

Future work: Constructive dimension theory of Noetherian rings
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