
>implying implications can go another direction

Pierre-Marie Pédrot

INRIA

CIRM
09/25

P.-M. Pédrot (INRIA) >implying implications 09/25 1 / 41

On The Menu

Synthetic mathematics, logic-affine computation
and efficient proof systems

« Vaste programme ! »

Synthetic frameworks have proved to be pivotal tools at the interface of mathematics and informatics, especially
enabling concise formalizations and custom proof systems. Noteworthy achievements include homotopy type
theory, synthetic computability theory, and synthetic algebraic geometry. Very similar paradigms characterize
the related areas of logic-driven computational algebra and geometry, sheaf models and modern realizability
theory, and strong negation for constructive reasoning with negative information. Contrasting yet complementary
approaches are about to converge, emphasizing the imperative of unifying theoretical underpinnings with practical
implementation. With the proposed seminar we aim to extend and deepen the convergence across disciplinary
boundaries by fostering exchange and collaboration among experts and practitioners.

P.-M. Pédrot (INRIA) >implying implications 09/25 2 / 41

On The Menu

Synthetic mathematics, logic-affine computation
and efficient proof systems

« Vaste programme ! »

Synthetic frameworks have proved to be pivotal tools at the interface of mathematics and informatics, especially
enabling concise formalizations and custom proof systems. Noteworthy achievements include homotopy type
theory, synthetic computability theory, and synthetic algebraic geometry. Very similar paradigms characterize
the related areas of logic-driven computational algebra and geometry, sheaf models and modern realizability
theory, and strong negation for constructive reasoning with negative information. Contrasting yet complementary
approaches are about to converge, emphasizing the imperative of unifying theoretical underpinnings with practical
implementation. With the proposed seminar we aim to extend and deepen the convergence across disciplinary
boundaries by fostering exchange and collaboration among experts and practitioners.

P.-M. Pédrot (INRIA) >implying implications 09/25 2 / 41

On The Menu

Synthetic mathematics, logic-affine computation
and efficient proof systems

« Vaste programme ! »

Synthetic frameworks have proved to be pivotal tools at the interface of mathematics and informatics, especially
enabling concise formalizations and custom proof systems. Noteworthy achievements include homotopy type
theory, synthetic computability theory, and synthetic algebraic geometry. Very similar paradigms characterize
the related areas of logic-driven computational algebra and geometry, sheaf models and modern realizability
theory, and strong negation for constructive reasoning with negative information. Contrasting yet complementary
approaches are about to converge, emphasizing the imperative of unifying theoretical underpinnings with practical
implementation. With the proposed seminar we aim to extend and deepen the convergence across disciplinary
boundaries by fostering exchange and collaboration among experts and practitioners.

P.-M. Pédrot (INRIA) >implying implications 09/25 2 / 41

Following The Gradient

Then it dawned upon me...

The Good Old Gödel Dialectica Talkeroo!

... in a somewhat freshened up version.

Synthetic ✓
Modern realizability ✓
Logic-affine ✓
Strong negation ✓
Computability Complexity (close enough)

This is a theory talk, no proof systems in sight

But still: https://github.com/ppedrot/vitef/blob/master/dialectica/cwf.v

P.-M. Pédrot (INRIA) >implying implications 09/25 3 / 41

https://github.com/ppedrot/vitef/blob/master/dialectica/cwf.v

Following The Gradient

Then it dawned upon me...

The Good Old Gödel Dialectica Talkeroo!

... in a somewhat freshened up version.

Synthetic ✓
Modern realizability ✓
Logic-affine ✓
Strong negation ✓
Computability Complexity (close enough)

This is a theory talk, no proof systems in sight

But still: https://github.com/ppedrot/vitef/blob/master/dialectica/cwf.v

P.-M. Pédrot (INRIA) >implying implications 09/25 3 / 41

https://github.com/ppedrot/vitef/blob/master/dialectica/cwf.v

Following The Gradient

Then it dawned upon me...

The Good Old Gödel Dialectica Talkeroo!

... in a somewhat freshened up version.

Synthetic ✓
Modern realizability ✓
Logic-affine ✓
Strong negation ✓
Computability Complexity (close enough)

This is a theory talk, no proof systems in sight

But still: https://github.com/ppedrot/vitef/blob/master/dialectica/cwf.v

P.-M. Pédrot (INRIA) >implying implications 09/25 3 / 41

https://github.com/ppedrot/vitef/blob/master/dialectica/cwf.v

Following The Gradient

Then it dawned upon me...

The Good Old Gödel Dialectica Talkeroo!

... in a somewhat freshened up version.

Synthetic ✓
Modern realizability ✓
Logic-affine ✓
Strong negation ✓
Computability Complexity (close enough)

This is a theory talk, no proof systems in sight

But still: https://github.com/ppedrot/vitef/blob/master/dialectica/cwf.v
P.-M. Pédrot (INRIA) >implying implications 09/25 3 / 41

https://github.com/ppedrot/vitef/blob/master/dialectica/cwf.v

In Case of Doubt, Reboot

Dialectica

Shameless recycling: it was the topic of my PhD

Advertisement-worthy: it is not taught around enough to my taste
Latent schizophrenia: it keeps appearing everywhere (and nobody sees it)

I am definitely not obsessed

P.-M. Pédrot (INRIA) >implying implications 09/25 4 / 41

In Case of Doubt, Reboot

Dialectica

Shameless recycling: it was the topic of my PhD
Advertisement-worthy: it is not taught around enough to my taste

Latent schizophrenia: it keeps appearing everywhere (and nobody sees it)

I am definitely not obsessed

P.-M. Pédrot (INRIA) >implying implications 09/25 4 / 41

In Case of Doubt, Reboot

Dialectica

Shameless recycling: it was the topic of my PhD
Advertisement-worthy: it is not taught around enough to my taste
Latent schizophrenia: it keeps appearing everywhere (and nobody sees it)

I am definitely not obsessed

P.-M. Pédrot (INRIA) >implying implications 09/25 4 / 41

In Case of Doubt, Reboot

Dialectica

Shameless recycling: it was the topic of my PhD
Advertisement-worthy: it is not taught around enough to my taste
Latent schizophrenia: it keeps appearing everywhere (and nobody sees it)

I am definitely not obsessed

P.-M. Pédrot (INRIA) >implying implications 09/25 4 / 41

In This Talk

A Dialectica model of MLTT

A syntactic approach
No crazy categories
Almost implementable as a strict CwF in your favourite assistant

Towards synthetic complexity theory

Dialectica, the ultimate LL model
An effectful account of ressources
Graded types ascended through proof-relevant function space

P.-M. Pédrot (INRIA) >implying implications 09/25 5 / 41

In This Talk

A Dialectica model of MLTT

A syntactic approach
No crazy categories
Almost implementable as a strict CwF in your favourite assistant

Towards synthetic complexity theory

Dialectica, the ultimate LL model
An effectful account of ressources
Graded types ascended through proof-relevant function space

P.-M. Pédrot (INRIA) >implying implications 09/25 5 / 41

Part 0
The Dark Ages

P.-M. Pédrot (INRIA) >implying implications 09/25 6 / 41

A Short, Mostly Wrong History of Dialectica

Dialectica in a nutshell

Designed by Gödel in the 30’s but published in 1958
The great ancestor of realizability
The name comes from the journal it was published in
Basically a fancy realizability model of HAω into System T
Extremely kludgy and antiquated

The More You Know

In Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Gödel
passes more time discussing α-conversion than the actual Dialectica.

(You have been warned.)

P.-M. Pédrot (INRIA) >implying implications 09/25 7 / 41

A Short, Mostly Wrong History of Dialectica

Dialectica in a nutshell

Designed by Gödel in the 30’s but published in 1958
The great ancestor of realizability
The name comes from the journal it was published in
Basically a fancy realizability model of HAω into System T
Extremely kludgy and antiquated

The More You Know

In Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Gödel
passes more time discussing α-conversion than the actual Dialectica.

(You have been warned.)

P.-M. Pédrot (INRIA) >implying implications 09/25 7 / 41

A Short, Mostly Wrong History of Dialectica

Dialectica in a nutshell

Designed by Gödel in the 30’s but published in 1958
The great ancestor of realizability
The name comes from the journal it was published in
Basically a fancy realizability model of HAω into System T
Extremely kludgy and antiquated

The More You Know

In Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Gödel
passes more time discussing α-conversion than the actual Dialectica.

(You have been warned.)

P.-M. Pédrot (INRIA) >implying implications 09/25 7 / 41

Anatomy of a Dusty Realizability

If HAω ⊢ A then

Witness Counter Orthogonality
Sequence of types Sequence of types

P.-M. Pédrot (INRIA) >implying implications 09/25 8 / 41

We Have Come to Realize

The ∃u⃗ : W(A) is the realizability part

On most connectives, Dialectica follows the BHK interpretation.
W(A ∧ B) ∼ W(A)×W(B)
W(A ∨ B) ∼ W(A) +W(B)

That is, it is morally the same as Kreisel realizability / MLTT
i.e. boring intuitionistic semantics
C(A) is like A⊥ / stack in the KAM / strong negation

... except the one important connective

A → B

P.-M. Pédrot (INRIA) >implying implications 09/25 9 / 41

We Have Come to Realize

The ∃u⃗ : W(A) is the realizability part

On most connectives, Dialectica follows the BHK interpretation.
W(A ∧ B) ∼ W(A)×W(B)
W(A ∨ B) ∼ W(A) +W(B)

That is, it is morally the same as Kreisel realizability / MLTT
i.e. boring intuitionistic semantics
C(A) is like A⊥ / stack in the KAM / strong negation

... except the one important connective

A → B

P.-M. Pédrot (INRIA) >implying implications 09/25 9 / 41

We Have Come to Realize

The ∃u⃗ : W(A) is the realizability part

On most connectives, Dialectica follows the BHK interpretation.
W(A ∧ B) ∼ W(A)×W(B)
W(A ∨ B) ∼ W(A) +W(B)

That is, it is morally the same as Kreisel realizability / MLTT
i.e. boring intuitionistic semantics
C(A) is like A⊥ / stack in the KAM / strong negation

... except the one important connective

A → B

P.-M. Pédrot (INRIA) >implying implications 09/25 9 / 41

We Have Come to Realize

The ∃u⃗ : W(A) is the realizability part

On most connectives, Dialectica follows the BHK interpretation.
W(A ∧ B) ∼ W(A)×W(B)
W(A ∨ B) ∼ W(A) +W(B)

That is, it is morally the same as Kreisel realizability / MLTT
i.e. boring intuitionistic semantics
C(A) is like A⊥ / stack in the KAM / strong negation

... except the one important connective

A → B

P.-M. Pédrot (INRIA) >implying implications 09/25 9 / 41

We Have Come to Realize

The ∃u⃗ : W(A) is the realizability part

On most connectives, Dialectica follows the BHK interpretation.
W(A ∧ B) ∼ W(A)×W(B)
W(A ∨ B) ∼ W(A) +W(B)

That is, it is morally the same as Kreisel realizability / MLTT
i.e. boring intuitionistic semantics
C(A) is like A⊥ / stack in the KAM / strong negation

... except the one important connective

A → B
P.-M. Pédrot (INRIA) >implying implications 09/25 9 / 41

Implying this Makes Sense

There is more to arrows than just functions!

W(A → B) =

{
W(A) ⇒ W(B)
W(A) ⇒ C(B) ⇒ C(A)

C(A → B) = W(A)× C(B)

Functions have both a forward and a backward component.

⇝ Ominous Nugget of Wisdom
backward component = intensional behaviour of the forward component

P.-M. Pédrot (INRIA) >implying implications 09/25 10 / 41

Implying this Makes Sense

There is more to arrows than just functions!

W(A → B) =

{
W(A) ⇒ W(B)
W(A) ⇒ C(B) ⇒ C(A)

C(A → B) = W(A)× C(B)

Functions have both a forward and a backward component.

⇝ Ominous Nugget of Wisdom
backward component = intensional behaviour of the forward component

P.-M. Pédrot (INRIA) >implying implications 09/25 10 / 41

Can Dialectica Break Bricks?

Since De Paiva, it is well-known that Dialectica factorizes through LL

Actually, most models of LL are Dialectica-like

Chu spaces
Dialectica categories
Double-glueing

Nothing new here, nonetheless, it does not hurt to stress it.

Empirical Observation
Dialectica is the most natural way to linearize an intuitionistic calculus

P.-M. Pédrot (INRIA) >implying implications 09/25 11 / 41

Can Dialectica Break Bricks?

Since De Paiva, it is well-known that Dialectica factorizes through LL

Actually, most models of LL are Dialectica-like

Chu spaces
Dialectica categories
Double-glueing

Nothing new here, nonetheless, it does not hurt to stress it.

Empirical Observation
Dialectica is the most natural way to linearize an intuitionistic calculus

P.-M. Pédrot (INRIA) >implying implications 09/25 11 / 41

Can Dialectica Break Bricks?

Since De Paiva, it is well-known that Dialectica factorizes through LL

Actually, most models of LL are Dialectica-like

Chu spaces
Dialectica categories
Double-glueing

Nothing new here, nonetheless, it does not hurt to stress it.

Empirical Observation
Dialectica is the most natural way to linearize an intuitionistic calculus

P.-M. Pédrot (INRIA) >implying implications 09/25 11 / 41

Can Dialectica Break Bricks?

Since De Paiva, it is well-known that Dialectica factorizes through LL

Actually, most models of LL are Dialectica-like

Chu spaces
Dialectica categories
Double-glueing

Nothing new here, nonetheless, it does not hurt to stress it.

Empirical Observation
Dialectica is the most natural way to linearize an intuitionistic calculus

P.-M. Pédrot (INRIA) >implying implications 09/25 11 / 41

Part I
Dialectica Done Right

P.-M. Pédrot (INRIA) >implying implications 09/25 12 / 41

Lambda Akbar

Let us present Dialectica as a program translation!

Replace HAω in the source by MLTT
Replace System T + HAω in the target by MLTT (some cheating involved here)

A variant of Moss-von Glehn model (a.k.a the Google Drive note by A. Bauer and myself)

Reminiscent of Shulman’s model of affine FOL in Chu spaces

What could possibly go wrong?

P.-M. Pédrot (INRIA) >implying implications 09/25 13 / 41

Lambda Akbar

Let us present Dialectica as a program translation!

Replace HAω in the source by MLTT
Replace System T + HAω in the target by MLTT (some cheating involved here)

A variant of Moss-von Glehn model (a.k.a the Google Drive note by A. Bauer and myself)

Reminiscent of Shulman’s model of affine FOL in Chu spaces

What could possibly go wrong?

P.-M. Pédrot (INRIA) >implying implications 09/25 13 / 41

Lambda Akbar

Let us present Dialectica as a program translation!

Replace HAω in the source by MLTT
Replace System T + HAω in the target by MLTT (some cheating involved here)

A variant of Moss-von Glehn model (a.k.a the Google Drive note by A. Bauer and myself)

Reminiscent of Shulman’s model of affine FOL in Chu spaces

What could possibly go wrong?

P.-M. Pédrot (INRIA) >implying implications 09/25 13 / 41

Exponentially More Complex

Problem #1: MLTT has a notion of definitional equality of proofs!

⇝ No such thing in sight for HAω...

Basically my PhD
What if we treat the propositional fragment of HAω as a λ-calculus?

(λx : A.M) N ̸≡ M{x := N}

Oopsie
Dialectica breaks the equational theory immediately

😱 The original Dialectica is not a program translation 😱

P.-M. Pédrot (INRIA) >implying implications 09/25 14 / 41

Exponentially More Complex

Problem #1: MLTT has a notion of definitional equality of proofs!

⇝ No such thing in sight for HAω...

Basically my PhD
What if we treat the propositional fragment of HAω as a λ-calculus?

(λx : A.M) N ̸≡ M{x := N}

Oopsie
Dialectica breaks the equational theory immediately

😱 The original Dialectica is not a program translation 😱

P.-M. Pédrot (INRIA) >implying implications 09/25 14 / 41

Exponentially More Complex

Problem #1: MLTT has a notion of definitional equality of proofs!

⇝ No such thing in sight for HAω...

Basically my PhD
What if we treat the propositional fragment of HAω as a λ-calculus?

(λx : A.M) N ̸≡ M{x := N}

Oopsie
Dialectica breaks the equational theory immediately

😱 The original Dialectica is not a program translation 😱

P.-M. Pédrot (INRIA) >implying implications 09/25 14 / 41

Exponentially More Complex

Problem #1: MLTT has a notion of definitional equality of proofs!

⇝ No such thing in sight for HAω...

Basically my PhD
What if we treat the propositional fragment of HAω as a λ-calculus?

(λx : A.M) N ̸≡ M{x := N}

Oopsie
Dialectica breaks the equational theory immediately

😱 The original Dialectica is not a program translation 😱

P.-M. Pédrot (INRIA) >implying implications 09/25 14 / 41

One Semiring To Bind Them All

We must introduce an additional structure M called abstract multisets

A generalization of finite multisets
Clearly there to handle LL exponentials

Behold the Diller-Nahm interpretation

W(A → B) =

{
W(A) ⇒ W(B)
W(A) ⇒ C(B) ⇒ M C(A)

Before: W(A → B) =

{
W(A) ⇒ W(B)
W(A) ⇒ C(B) ⇒ C(A)

P.-M. Pédrot (INRIA) >implying implications 09/25 15 / 41

One Semiring To Bind Them All

We must introduce an additional structure M called abstract multisets

A generalization of finite multisets
Clearly there to handle LL exponentials

Behold the Diller-Nahm interpretation

W(A → B) =

{
W(A) ⇒ W(B)
W(A) ⇒ C(B) ⇒ M C(A)

Before: W(A → B) =

{
W(A) ⇒ W(B)
W(A) ⇒ C(B) ⇒ C(A)

P.-M. Pédrot (INRIA) >implying implications 09/25 15 / 41

Categorical Nonsense

An abstract multiset structure is just a semiringoid!

A monad M with return and bind:
{·} : A → M A >>= : M A → (A → M B) → M B

that further has a commutative monoid structure:
∅ : M A ⊕ : M A → M A → M A

Trigger Warning
If you forget the parameter, equations are those of a semiring

{M} >>= F ≡ F M M >>= (λx. {x}) ≡ M

(M >>= F) >>= G ≡ M >>= (λx. F x >>= G)

∅ ⊕ M ≡ M M ⊕ ∅ ≡ M (M ⊕ N) ⊕ P ≡ M ⊕ (N ⊕ P)

∅ >>= F ≡ ∅ M >>= (λx.∅) ≡ ∅

(M ⊕ N) >>= F ≡ (M >>= F) ⊕ (N >>= F) M >>= (λx. F ⊕ G) ≡ (M >>= F) ⊕ (M >>= G)

Prototypical example: finite multisets

P.-M. Pédrot (INRIA) >implying implications 09/25 16 / 41

Categorical Nonsense

An abstract multiset structure is just a semiringoid!

A monad M with return and bind:
{·} : A → M A >>= : M A → (A → M B) → M B

that further has a commutative monoid structure:
∅ : M A ⊕ : M A → M A → M A

Trigger Warning
If you forget the parameter, equations are those of a semiring

{M} >>= F ≡ F M M >>= (λx. {x}) ≡ M

(M >>= F) >>= G ≡ M >>= (λx. F x >>= G)

∅ ⊕ M ≡ M M ⊕ ∅ ≡ M (M ⊕ N) ⊕ P ≡ M ⊕ (N ⊕ P)

∅ >>= F ≡ ∅ M >>= (λx.∅) ≡ ∅

(M ⊕ N) >>= F ≡ (M >>= F) ⊕ (N >>= F) M >>= (λx. F ⊕ G) ≡ (M >>= F) ⊕ (M >>= G)

Prototypical example: finite multisets

P.-M. Pédrot (INRIA) >implying implications 09/25 16 / 41

Categorical Nonsense

An abstract multiset structure is just a semiringoid!

A monad M with return and bind:
{·} : A → M A >>= : M A → (A → M B) → M B

that further has a commutative monoid structure:
∅ : M A ⊕ : M A → M A → M A

Trigger Warning
If you forget the parameter, equations are those of a semiring

{M} >>= F ≡ F M M >>= (λx. {x}) ≡ M

(M >>= F) >>= G ≡ M >>= (λx. F x >>= G)

∅ ⊕ M ≡ M M ⊕ ∅ ≡ M (M ⊕ N) ⊕ P ≡ M ⊕ (N ⊕ P)

∅ >>= F ≡ ∅ M >>= (λx.∅) ≡ ∅

(M ⊕ N) >>= F ≡ (M >>= F) ⊕ (N >>= F) M >>= (λx. F ⊕ G) ≡ (M >>= F) ⊕ (M >>= G)

Prototypical example: finite multisets

P.-M. Pédrot (INRIA) >implying implications 09/25 16 / 41

Categorical Nonsense

An abstract multiset structure is just a semiringoid!

A monad M with return and bind:
{·} : A → M A >>= : M A → (A → M B) → M B

that further has a commutative monoid structure:
∅ : M A ⊕ : M A → M A → M A

Trigger Warning
If you forget the parameter, equations are those of a semiring

{M} >>= F ≡ F M M >>= (λx. {x}) ≡ M

(M >>= F) >>= G ≡ M >>= (λx. F x >>= G)

∅ ⊕ M ≡ M M ⊕ ∅ ≡ M (M ⊕ N) ⊕ P ≡ M ⊕ (N ⊕ P)

∅ >>= F ≡ ∅ M >>= (λx.∅) ≡ ∅

(M ⊕ N) >>= F ≡ (M >>= F) ⊕ (N >>= F) M >>= (λx. F ⊕ G) ≡ (M >>= F) ⊕ (M >>= G)

Prototypical example: finite multisets
P.-M. Pédrot (INRIA) >implying implications 09/25 16 / 41

Simpler? It Depends

Problem #2: We must handle dependency somehow

The YOLO principle
Just make everything dependent!

It is actually simpler in MLTT than in System T

A clear case where more expressivity helps

P.-M. Pédrot (INRIA) >implying implications 09/25 17 / 41

Simpler? It Depends

Problem #2: We must handle dependency somehow

The YOLO principle
Just make everything dependent!

It is actually simpler in MLTT than in System T

A clear case where more expressivity helps

P.-M. Pédrot (INRIA) >implying implications 09/25 17 / 41

Simpler? It Depends

Problem #2: We must handle dependency somehow

The YOLO principle
Just make everything dependent!

It is actually simpler in MLTT than in System T

A clear case where more expressivity helps

P.-M. Pédrot (INRIA) >implying implications 09/25 17 / 41

If There is No Problem there is No Solution

Remember that in standard Dialectica, a type A is converted to

a type W(A) a type C(A) a relation ⊥A⊆ W(A)× C(A)

Thanks to the added expressivity, we can conflate C(A) and ⊥A

An MLTT type A will be converted to
a type W(A)

a dependent type C(A) : W(A) → Type

No need for orthogonality, it is built into C!

Remark: for readability I will write C(A)⟨M⟩ for C(A) M.

P.-M. Pédrot (INRIA) >implying implications 09/25 18 / 41

If There is No Problem there is No Solution

Remember that in standard Dialectica, a type A is converted to

a type W(A) a type C(A) a relation ⊥A⊆ W(A)× C(A)

Thanks to the added expressivity, we can conflate C(A) and ⊥A

An MLTT type A will be converted to
a type W(A)

a dependent type C(A) : W(A) → Type

No need for orthogonality, it is built into C!

Remark: for readability I will write C(A)⟨M⟩ for C(A) M.

P.-M. Pédrot (INRIA) >implying implications 09/25 18 / 41

If There is No Problem there is No Solution

Remember that in standard Dialectica, a type A is converted to

a type W(A) a type C(A) a relation ⊥A⊆ W(A)× C(A)

Thanks to the added expressivity, we can conflate C(A) and ⊥A

An MLTT type A will be converted to
a type W(A)

a dependent type C(A) : W(A) → Type

No need for orthogonality, it is built into C!

Remark: for readability I will write C(A)⟨M⟩ for C(A) M.

P.-M. Pédrot (INRIA) >implying implications 09/25 18 / 41

The Translation, At Last

Assume Γ ⊢ M : A in MLTT.

The Dialectica translation will produce two kinds of objects.

The forward translation:

W(Γ) ⊢ [M] : W(A)

For each x : X ∈ Γ, a reverse translation:

W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩

Reminder:

M : Type → Type W(A) : Type C(A) : W(A) → Type

If ∥Γ∥ = n, this means I have n + 1 objects!

P.-M. Pédrot (INRIA) >implying implications 09/25 19 / 41

The Translation, At Last

Assume Γ ⊢ M : A in MLTT.

The Dialectica translation will produce two kinds of objects.

The forward translation:

W(Γ) ⊢ [M] : W(A)

For each x : X ∈ Γ, a reverse translation:

W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩

Reminder:

M : Type → Type W(A) : Type C(A) : W(A) → Type

If ∥Γ∥ = n, this means I have n + 1 objects!

P.-M. Pédrot (INRIA) >implying implications 09/25 19 / 41

The Translation, At Last

Assume Γ ⊢ M : A in MLTT.

The Dialectica translation will produce two kinds of objects.

The forward translation:

W(Γ) ⊢ [M] : W(A)

For each x : X ∈ Γ, a reverse translation:

W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩

Reminder:

M : Type → Type W(A) : Type C(A) : W(A) → Type

If ∥Γ∥ = n, this means I have n + 1 objects!

P.-M. Pédrot (INRIA) >implying implications 09/25 19 / 41

The Translation, At Last

Assume Γ ⊢ M : A in MLTT.

The Dialectica translation will produce two kinds of objects.

The forward translation:

W(Γ) ⊢ [M] : W(A)

For each x : X ∈ Γ, a reverse translation:

W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩

Reminder:

M : Type → Type W(A) : Type C(A) : W(A) → Type

If ∥Γ∥ = n, this means I have n + 1 objects!

P.-M. Pédrot (INRIA) >implying implications 09/25 19 / 41

The Translation, At Last

Assume Γ ⊢ M : A in MLTT.

The Dialectica translation will produce two kinds of objects.

The forward translation:

W(Γ) ⊢ [M] : W(A)

For each x : X ∈ Γ, a reverse translation:

W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩

Reminder:

M : Type → Type W(A) : Type C(A) : W(A) → Type

If ∥Γ∥ = n, this means I have n + 1 objects!

P.-M. Pédrot (INRIA) >implying implications 09/25 19 / 41

Motto

[M]x tracks the uses of x in M

W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩

In particular,
[x]x := λπ. {π} (dereliction)

[y]x := λπ.∅ if x ̸= y (weakening)

noting that
[x] := x

(Reminder: W(Γ) ⊢ [M] : W(A))

Substitution lemma (contraction + promotion)

[M{x := N}]y π ≡ ([M]y{x := [N]} π) ⊕ ([M]x{x := [N]} π >>= [N]y)

P.-M. Pédrot (INRIA) >implying implications 09/25 20 / 41

Motto

[M]x tracks the uses of x in M

W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩

In particular,
[x]x := λπ. {π} (dereliction)

[y]x := λπ.∅ if x ̸= y (weakening)

noting that
[x] := x

(Reminder: W(Γ) ⊢ [M] : W(A))

Substitution lemma (contraction + promotion)

[M{x := N}]y π ≡ ([M]y{x := [N]} π) ⊕ ([M]x{x := [N]} π >>= [N]y)

P.-M. Pédrot (INRIA) >implying implications 09/25 20 / 41

Motto

[M]x tracks the uses of x in M

W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩

In particular,
[x]x := λπ. {π} (dereliction)

[y]x := λπ.∅ if x ̸= y (weakening)

noting that
[x] := x

(Reminder: W(Γ) ⊢ [M] : W(A))

Substitution lemma (contraction + promotion)

[M{x := N}]y π ≡ ([M]y{x := [N]} π) ⊕ ([M]x{x := [N]} π >>= [N]y)

P.-M. Pédrot (INRIA) >implying implications 09/25 20 / 41

So I Herd U Liek CwF

This also makes sense algebraically for CwF substitutions

A substitution σ : Γ ⊢ ∆ has both
A forward map σ+ : W(Γ) ⊢ W(∆)

A reverse map σ− : Π(γ : W(Γ)).C(∆)⟨σ+ · γ⟩ ⊢ C(Γ)⟨γ⟩
where C(Γ),C(∆) are M-algebras and σ− an algebra morphism.

The M operations are reflected straightforwardly

Weakening w : Γ,A ⊢ Γ is ∅
Duplication d : Γ ⊢ Γ,Γ is ⊕

With Dialectica, substitution is the effect!

P.-M. Pédrot (INRIA) >implying implications 09/25 21 / 41

So I Herd U Liek CwF

This also makes sense algebraically for CwF substitutions

A substitution σ : Γ ⊢ ∆ has both
A forward map σ+ : W(Γ) ⊢ W(∆)

A reverse map σ− : Π(γ : W(Γ)).C(∆)⟨σ+ · γ⟩ ⊢ C(Γ)⟨γ⟩
where C(Γ),C(∆) are M-algebras and σ− an algebra morphism.

The M operations are reflected straightforwardly

Weakening w : Γ,A ⊢ Γ is ∅
Duplication d : Γ ⊢ Γ,Γ is ⊕

With Dialectica, substitution is the effect!

P.-M. Pédrot (INRIA) >implying implications 09/25 21 / 41

So I Herd U Liek CwF

This also makes sense algebraically for CwF substitutions

A substitution σ : Γ ⊢ ∆ has both
A forward map σ+ : W(Γ) ⊢ W(∆)

A reverse map σ− : Π(γ : W(Γ)).C(∆)⟨σ+ · γ⟩ ⊢ C(Γ)⟨γ⟩
where C(Γ),C(∆) are M-algebras and σ− an algebra morphism.

The M operations are reflected straightforwardly

Weakening w : Γ,A ⊢ Γ is ∅
Duplication d : Γ ⊢ Γ,Γ is ⊕

With Dialectica, substitution is the effect!

P.-M. Pédrot (INRIA) >implying implications 09/25 21 / 41

So I Herd U Liek CwF

This also makes sense algebraically for CwF substitutions

A substitution σ : Γ ⊢ ∆ has both
A forward map σ+ : W(Γ) ⊢ W(∆)

A reverse map σ− : Π(γ : W(Γ)).C(∆)⟨σ+ · γ⟩ ⊢ C(Γ)⟨γ⟩
where C(Γ),C(∆) are M-algebras and σ− an algebra morphism.

The M operations are reflected straightforwardly

Weakening w : Γ,A ⊢ Γ is ∅
Duplication d : Γ ⊢ Γ,Γ is ⊕

With Dialectica, substitution is the effect!

P.-M. Pédrot (INRIA) >implying implications 09/25 21 / 41

A Functional Functional Interpretation

There is no structure in our theory yet, let’s look at functions!

W(Π(x : A).B) :=

{
f : Π(x : W(A)).W(B)
φ : Π(x : W(A)).C(B)⟨f x⟩ → M C(A)⟨x⟩

}
C(Π(x : A).B)⟨f, φ⟩ := Σ(x : W(A)).C(B)⟨f x⟩

Up to dependent noise, this is the same as the simply typed variant!

Forward translations are almost the identity.

[λx.M] := (λx. [M]), (λx. [M]x)
[M N] := [M].1 [N]

Recall: if Γ ⊢ M : A then W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩ provided x : X ∈ Γ

P.-M. Pédrot (INRIA) >implying implications 09/25 22 / 41

A Functional Functional Interpretation

There is no structure in our theory yet, let’s look at functions!

W(Π(x : A).B) :=

{
f : Π(x : W(A)).W(B)
φ : Π(x : W(A)).C(B)⟨f x⟩ → M C(A)⟨x⟩

}
C(Π(x : A).B)⟨f, φ⟩ := Σ(x : W(A)).C(B)⟨f x⟩

Up to dependent noise, this is the same as the simply typed variant!

Forward translations are almost the identity.

[λx.M] := (λx. [M]), (λx. [M]x)
[M N] := [M].1 [N]

Recall: if Γ ⊢ M : A then W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩ provided x : X ∈ Γ

P.-M. Pédrot (INRIA) >implying implications 09/25 22 / 41

A Functional Functional Interpretation

There is no structure in our theory yet, let’s look at functions!

W(Π(x : A).B) :=

{
f : Π(x : W(A)).W(B)
φ : Π(x : W(A)).C(B)⟨f x⟩ → M C(A)⟨x⟩

}
C(Π(x : A).B)⟨f, φ⟩ := Σ(x : W(A)).C(B)⟨f x⟩

Up to dependent noise, this is the same as the simply typed variant!

Forward translations are almost the identity.

[λx.M] := (λx. [M]), (λx. [M]x)
[M N] := [M].1 [N]

Recall: if Γ ⊢ M : A then W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩ provided x : X ∈ Γ

P.-M. Pédrot (INRIA) >implying implications 09/25 22 / 41

Full Reverse

Reverse translations are quite a mouthful.

[M]x tracks the uses of x in M

[λy.M]x := λ(y, π). [M]x π

[M N]x := λπ. ([M]x ([N], π)) ⊕ ([M].2 [N] π >>= [N]x)

Cheat Sheet
1. If Γ ⊢ M : A then W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩ provided x : X ∈ Γ.

2. W(Π(x : A).B) :=

{
f : Π(x : W(A)).W(B)
φ : Π(x : W(A)).C(B)⟨f x⟩ → M C(A)⟨x⟩

}
3. C(Π(x : A).B)⟨f, φ⟩ := Σ(x : W(A)).C(B)⟨f x⟩

Application basically follows the substitution lemma.

P.-M. Pédrot (INRIA) >implying implications 09/25 23 / 41

Full Reverse

Reverse translations are quite a mouthful.

[M]x tracks the uses of x in M

[λy.M]x := λ(y, π). [M]x π

[M N]x := λπ. ([M]x ([N], π)) ⊕ ([M].2 [N] π >>= [N]x)

Cheat Sheet
1. If Γ ⊢ M : A then W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩ provided x : X ∈ Γ.

2. W(Π(x : A).B) :=

{
f : Π(x : W(A)).W(B)
φ : Π(x : W(A)).C(B)⟨f x⟩ → M C(A)⟨x⟩

}
3. C(Π(x : A).B)⟨f, φ⟩ := Σ(x : W(A)).C(B)⟨f x⟩

Application basically follows the substitution lemma.

P.-M. Pédrot (INRIA) >implying implications 09/25 23 / 41

Full Reverse

Reverse translations are quite a mouthful.

[M]x tracks the uses of x in M

[λy.M]x := λ(y, π). [M]x π

[M N]x := λπ. ([M]x ([N], π)) ⊕ ([M].2 [N] π >>= [N]x)

Cheat Sheet
1. If Γ ⊢ M : A then W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩ provided x : X ∈ Γ.

2. W(Π(x : A).B) :=

{
f : Π(x : W(A)).W(B)
φ : Π(x : W(A)).C(B)⟨f x⟩ → M C(A)⟨x⟩

}
3. C(Π(x : A).B)⟨f, φ⟩ := Σ(x : W(A)).C(B)⟨f x⟩

Application basically follows the substitution lemma.

P.-M. Pédrot (INRIA) >implying implications 09/25 23 / 41

Full Reverse

Reverse translations are quite a mouthful.

[M]x tracks the uses of x in M

[λy.M]x := λ(y, π). [M]x π

[M N]x := λπ. ([M]x ([N], π)) ⊕ ([M].2 [N] π >>= [N]x)

Cheat Sheet
1. If Γ ⊢ M : A then W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩ provided x : X ∈ Γ.

2. W(Π(x : A).B) :=

{
f : Π(x : W(A)).W(B)
φ : Π(x : W(A)).C(B)⟨f x⟩ → M C(A)⟨x⟩

}
3. C(Π(x : A).B)⟨f, φ⟩ := Σ(x : W(A)).C(B)⟨f x⟩

Application basically follows the substitution lemma.
P.-M. Pédrot (INRIA) >implying implications 09/25 23 / 41

Positive Attitude

I have been bluffing you: a dependent C is only needed for positive types.

⇝ most of the dependent noise so far has been useless.

I don’t want to enter details, here is a quick sketch of sum types:

W(A + B) := W(A) +W(B)
C(A + B)⟨inl M⟩ := C(A)⟨M⟩
C(A + B)⟨inr N⟩ := C(B)⟨N⟩

⇝ term translation follows the leading Motto

[M]x tracks the uses of x in M

We get inductive types with large elimination

... and also indices!
The model preserves canonicity

P.-M. Pédrot (INRIA) >implying implications 09/25 24 / 41

Positive Attitude

I have been bluffing you: a dependent C is only needed for positive types.

⇝ most of the dependent noise so far has been useless.
I don’t want to enter details, here is a quick sketch of sum types:

W(A + B) := W(A) +W(B)

C(A + B)⟨inl M⟩ := C(A)⟨M⟩
C(A + B)⟨inr N⟩ := C(B)⟨N⟩

⇝ term translation follows the leading Motto

[M]x tracks the uses of x in M

We get inductive types with large elimination

... and also indices!
The model preserves canonicity

P.-M. Pédrot (INRIA) >implying implications 09/25 24 / 41

Positive Attitude

I have been bluffing you: a dependent C is only needed for positive types.

⇝ most of the dependent noise so far has been useless.
I don’t want to enter details, here is a quick sketch of sum types:

W(A + B) := W(A) +W(B)
C(A + B)⟨inl M⟩ := C(A)⟨M⟩
C(A + B)⟨inr N⟩ := C(B)⟨N⟩

⇝ term translation follows the leading Motto

[M]x tracks the uses of x in M

We get inductive types with large elimination

... and also indices!
The model preserves canonicity

P.-M. Pédrot (INRIA) >implying implications 09/25 24 / 41

Positive Attitude

I have been bluffing you: a dependent C is only needed for positive types.

⇝ most of the dependent noise so far has been useless.
I don’t want to enter details, here is a quick sketch of sum types:

W(A + B) := W(A) +W(B)
C(A + B)⟨inl M⟩ := C(A)⟨M⟩
C(A + B)⟨inr N⟩ := C(B)⟨N⟩

⇝ term translation follows the leading Motto

[M]x tracks the uses of x in M

We get inductive types with large elimination

... and also indices!
The model preserves canonicity

P.-M. Pédrot (INRIA) >implying implications 09/25 24 / 41

Positive Attitude

I have been bluffing you: a dependent C is only needed for positive types.

⇝ most of the dependent noise so far has been useless.
I don’t want to enter details, here is a quick sketch of sum types:

W(A + B) := W(A) +W(B)
C(A + B)⟨inl M⟩ := C(A)⟨M⟩
C(A + B)⟨inr N⟩ := C(B)⟨N⟩

⇝ term translation follows the leading Motto

[M]x tracks the uses of x in M

We get inductive types with large elimination

... and also indices!
The model preserves canonicity

P.-M. Pédrot (INRIA) >implying implications 09/25 24 / 41

The Universal Property of Universes

As usual in effectful models of MLTT, types-as-terms are underspecified

W(Type) := { W : Type; C : W → Type }
C(Type)⟨W,C⟩ := whatever

W(A) := [A].W C(A) := [A].C

⇝ for the forward translation of a type A we have little choice

[A] := (W(A),C(A))

⇝ for the reverse translation, no constraints (“types do not use resources”)

[A]x := λπ.∅

A lot of somewhat arbitrary choices

P.-M. Pédrot (INRIA) >implying implications 09/25 25 / 41

The Universal Property of Universes

As usual in effectful models of MLTT, types-as-terms are underspecified

W(Type) := { W : Type; C : W → Type }
C(Type)⟨W,C⟩ := whatever

W(A) := [A].W C(A) := [A].C

⇝ for the forward translation of a type A we have little choice

[A] := (W(A),C(A))

⇝ for the reverse translation, no constraints (“types do not use resources”)

[A]x := λπ.∅

A lot of somewhat arbitrary choices

P.-M. Pédrot (INRIA) >implying implications 09/25 25 / 41

The Universal Property of Universes

As usual in effectful models of MLTT, types-as-terms are underspecified

W(Type) := { W : Type; C : W → Type }
C(Type)⟨W,C⟩ := whatever

W(A) := [A].W C(A) := [A].C

⇝ for the forward translation of a type A we have little choice

[A] := (W(A),C(A))

⇝ for the reverse translation, no constraints (“types do not use resources”)

[A]x := λπ.∅

A lot of somewhat arbitrary choices

P.-M. Pédrot (INRIA) >implying implications 09/25 25 / 41

The Universal Property of Universes

As usual in effectful models of MLTT, types-as-terms are underspecified

W(Type) := { W : Type; C : W → Type }
C(Type)⟨W,C⟩ := whatever

W(A) := [A].W C(A) := [A].C

⇝ for the forward translation of a type A we have little choice

[A] := (W(A),C(A))

⇝ for the reverse translation, no constraints (“types do not use resources”)

[A]x := λπ.∅

A lot of somewhat arbitrary choices

P.-M. Pédrot (INRIA) >implying implications 09/25 25 / 41

The Universal Property of Universes

As usual in effectful models of MLTT, types-as-terms are underspecified

W(Type) := { W : Type; C : W → Type }
C(Type)⟨W,C⟩ := whatever

W(A) := [A].W C(A) := [A].C

⇝ for the forward translation of a type A we have little choice

[A] := (W(A),C(A))

⇝ for the reverse translation, no constraints (“types do not use resources”)

[A]x := λπ.∅

A lot of somewhat arbitrary choices

P.-M. Pédrot (INRIA) >implying implications 09/25 25 / 41

The Universal Property of Universes

As usual in effectful models of MLTT, types-as-terms are underspecified

W(Type) := { W : Type; C : W → Type }
C(Type)⟨W,C⟩ := whatever

W(A) := [A].W C(A) := [A].C

⇝ for the forward translation of a type A we have little choice

[A] := (W(A),C(A))

⇝ for the reverse translation, no constraints (“types do not use resources”)

[A]x := λπ.∅

A lot of somewhat arbitrary choices
P.-M. Pédrot (INRIA) >implying implications 09/25 25 / 41

Trust me

We have defined a model of MLTT.

If Γ ⊢ M : A,
W(Γ) ⊢ [M] : W(A)

W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩ for all x : X ∈ Γ

and similarly for conversion.

This can be presented as an almost strict CwF

P.-M. Pédrot (INRIA) >implying implications 09/25 26 / 41

Trust me

We have defined a model of MLTT.

If Γ ⊢ M : A,
W(Γ) ⊢ [M] : W(A)

W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩ for all x : X ∈ Γ

and similarly for conversion.

This can be presented as an almost strict CwF

P.-M. Pédrot (INRIA) >implying implications 09/25 26 / 41

Part II
What Have I Got In My Pocket?

P.-M. Pédrot (INRIA) >implying implications 09/25 27 / 41

Synthetic A Posteriori

As expected, some features of LL

A ⊗ B v.s. A & B

Some kind of internal exponential !A

Essentially Inductive !A := box : A → !A

Π(x : !A). box (prj x) = x and Π(x : A). prj (box x) = x
prj ◦ box ≡ id
but box ◦ prj ̸= id

The model breaks funext!

⊢ 1 → 1 ∼= M 1 ∼= N

Can this be of any use?

P.-M. Pédrot (INRIA) >implying implications 09/25 28 / 41

Synthetic A Posteriori

As expected, some features of LL

A ⊗ B v.s. A & B

Some kind of internal exponential !A

Essentially Inductive !A := box : A → !A

Π(x : !A). box (prj x) = x and Π(x : A). prj (box x) = x
prj ◦ box ≡ id

but box ◦ prj ̸= id

The model breaks funext!

⊢ 1 → 1 ∼= M 1 ∼= N

Can this be of any use?

P.-M. Pédrot (INRIA) >implying implications 09/25 28 / 41

Synthetic A Posteriori

As expected, some features of LL

A ⊗ B v.s. A & B

Some kind of internal exponential !A

Essentially Inductive !A := box : A → !A

Π(x : !A). box (prj x) = x and Π(x : A). prj (box x) = x
prj ◦ box ≡ id
but box ◦ prj ̸= id

The model breaks funext!

⊢ 1 → 1 ∼= M 1 ∼= N

Can this be of any use?

P.-M. Pédrot (INRIA) >implying implications 09/25 28 / 41

Synthetic A Posteriori

As expected, some features of LL

A ⊗ B v.s. A & B

Some kind of internal exponential !A

Essentially Inductive !A := box : A → !A

Π(x : !A). box (prj x) = x and Π(x : A). prj (box x) = x
prj ◦ box ≡ id
but box ◦ prj ̸= id

The model breaks funext!

⊢ 1 → 1 ∼= M 1 ∼= N

Can this be of any use?

P.-M. Pédrot (INRIA) >implying implications 09/25 28 / 41

Synthetic A Posteriori

As expected, some features of LL

A ⊗ B v.s. A & B

Some kind of internal exponential !A

Essentially Inductive !A := box : A → !A

Π(x : !A). box (prj x) = x and Π(x : A). prj (box x) = x
prj ◦ box ≡ id
but box ◦ prj ̸= id

The model breaks funext!

⊢ 1 → 1 ∼= M 1 ∼= N

Can this be of any use?
P.-M. Pédrot (INRIA) >implying implications 09/25 28 / 41

And Now For Something Completely Different

People in type theory want to track resources

for efficiency
for security / privacy
for the love of LL

Various names for somewhat similar systems

Graded type theories (à la Orchard)
Quantitative type theories (à la McBride-Atkey)

As a first-order approximation I will lump them together here

I will gloss over the differences
and deliberately ignore some technicalities

P.-M. Pédrot (INRIA) >implying implications 09/25 29 / 41

And Now For Something Completely Different

People in type theory want to track resources

for efficiency
for security / privacy
for the love of LL

Various names for somewhat similar systems

Graded type theories (à la Orchard)
Quantitative type theories (à la McBride-Atkey)

As a first-order approximation I will lump them together here

I will gloss over the differences
and deliberately ignore some technicalities

P.-M. Pédrot (INRIA) >implying implications 09/25 29 / 41

And Now For Something Completely Different

People in type theory want to track resources

for efficiency
for security / privacy
for the love of LL

Various names for somewhat similar systems

Graded type theories (à la Orchard)
Quantitative type theories (à la McBride-Atkey)

As a first-order approximation I will lump them together here

I will gloss over the differences
and deliberately ignore some technicalities

P.-M. Pédrot (INRIA) >implying implications 09/25 29 / 41

Get in the Ring

Typically, fix a resource semi-ring (M,+,×).

⇝ used to assign a measure to variable use
0 means not used
1 is exactly once

⇝ you tend to expect a little bit more structure
an order ≤ compatible with the semi-ring operations
often a maximal absorbing element ω
sometimes a max operation ⊔

Simplest example is 0 ≤ 1 ≤ ω.

P.-M. Pédrot (INRIA) >implying implications 09/25 30 / 41

Get in the Ring

Typically, fix a resource semi-ring (M,+,×).

⇝ used to assign a measure to variable use
0 means not used
1 is exactly once

⇝ you tend to expect a little bit more structure
an order ≤ compatible with the semi-ring operations
often a maximal absorbing element ω
sometimes a max operation ⊔

Simplest example is 0 ≤ 1 ≤ ω.

P.-M. Pédrot (INRIA) >implying implications 09/25 30 / 41

Get in the Ring

Typically, fix a resource semi-ring (M,+,×).

⇝ used to assign a measure to variable use
0 means not used
1 is exactly once

⇝ you tend to expect a little bit more structure
an order ≤ compatible with the semi-ring operations
often a maximal absorbing element ω
sometimes a max operation ⊔

Simplest example is 0 ≤ 1 ≤ ω.

P.-M. Pédrot (INRIA) >implying implications 09/25 30 / 41

Varying Variables

Variables are annotated by the semi-ring

x1 :α1 X1, . . . x :αn Xn ⊢ M : A

where αi : M

⇝ the semi-ring structure lifts to contexts naturally.

Types and terms are annotated accordingly

A,B ::= . . . | A →α B | . . .

P.-M. Pédrot (INRIA) >implying implications 09/25 31 / 41

Varying Variables

Variables are annotated by the semi-ring

x1 :α1 X1, . . . x :αn Xn ⊢ M : A

where αi : M

⇝ the semi-ring structure lifts to contexts naturally.

Types and terms are annotated accordingly

A,B ::= . . . | A →α B | . . .

P.-M. Pédrot (INRIA) >implying implications 09/25 31 / 41

Varying Variables

Variables are annotated by the semi-ring

x1 :α1 X1, . . . x :αn Xn ⊢ M : A

where αi : M

⇝ the semi-ring structure lifts to contexts naturally.

Types and terms are annotated accordingly

A,B ::= . . . | A →α B | . . .

P.-M. Pédrot (INRIA) >implying implications 09/25 31 / 41

Apply Copiously

Some typing rules are expected

0Γ, x :1 A ⊢ x : A
Γ, x :α A ⊢ M : B

Γ ⊢ λx.M : A →α B

More interesting is the case of application!

Γ ⊢ M : A →α B ∆ ⊢ N : A
Γ + (α×∆) ⊢ M N : B

This is really where the semi-ring structure shines!

P.-M. Pédrot (INRIA) >implying implications 09/25 32 / 41

Apply Copiously

Some typing rules are expected

0Γ, x :1 A ⊢ x : A
Γ, x :α A ⊢ M : B

Γ ⊢ λx.M : A →α B

More interesting is the case of application!

Γ ⊢ M : A →α B ∆ ⊢ N : A
Γ + (α×∆) ⊢ M N : B

This is really where the semi-ring structure shines!

P.-M. Pédrot (INRIA) >implying implications 09/25 32 / 41

The Sad Truth

Why are graded types too limited?

The semi-ring gives very little expressivity!

Poor language of annotations
Despairingly simple-typed
Often needs to overapproximate
Not very modular

Let me give some examples of increasing annoyance

P.-M. Pédrot (INRIA) >implying implications 09/25 33 / 41

The Sad Truth

Why are graded types too limited?

The semi-ring gives very little expressivity!

Poor language of annotations
Despairingly simple-typed
Often needs to overapproximate
Not very modular

Let me give some examples of increasing annoyance

P.-M. Pédrot (INRIA) >implying implications 09/25 33 / 41

The Sad Truth

Why are graded types too limited?

The semi-ring gives very little expressivity!

Poor language of annotations
Despairingly simple-typed
Often needs to overapproximate
Not very modular

Let me give some examples of increasing annoyance

P.-M. Pédrot (INRIA) >implying implications 09/25 33 / 41

There is no Alternative

Problem (easy)
How to type: if M then N1 else N2

Solution use max {N1,N2} and hope that subtyping will save you

Overapproximation: it actually depends on M

We would like an element α ∈ M := if M then α1 else α2

Problem (hard)
Same question with a recursion on N rather than B

Solution require the semiring to be a countably complete lattice ☹

P.-M. Pédrot (INRIA) >implying implications 09/25 34 / 41

There is no Alternative

Problem (easy)
How to type: if M then N1 else N2

Solution use max {N1,N2} and hope that subtyping will save you

Overapproximation: it actually depends on M

We would like an element α ∈ M := if M then α1 else α2

Problem (hard)
Same question with a recursion on N rather than B

Solution require the semiring to be a countably complete lattice ☹

P.-M. Pédrot (INRIA) >implying implications 09/25 34 / 41

There is no Alternative

Problem (easy)
How to type: if M then N1 else N2

Solution use max {N1,N2} and hope that subtyping will save you

Overapproximation: it actually depends on M

We would like an element α ∈ M := if M then α1 else α2

Problem (hard)
Same question with a recursion on N rather than B

Solution require the semiring to be a countably complete lattice ☹

P.-M. Pédrot (INRIA) >implying implications 09/25 34 / 41

There is no Alternative

Problem (easy)
How to type: if M then N1 else N2

Solution use max {N1,N2} and hope that subtyping will save you

Overapproximation: it actually depends on M

We would like an element α ∈ M := if M then α1 else α2

Problem (hard)
Same question with a recursion on N rather than B

Solution require the semiring to be a countably complete lattice ☹

P.-M. Pédrot (INRIA) >implying implications 09/25 34 / 41

There is no Alternative

Problem (easy)
How to type: if M then N1 else N2

Solution use max {N1,N2} and hope that subtyping will save you

Overapproximation: it actually depends on M

We would like an element α ∈ M := if M then α1 else α2

Problem (hard)
Same question with a recursion on N rather than B

Solution require the semiring to be a countably complete lattice ☹

P.-M. Pédrot (INRIA) >implying implications 09/25 34 / 41

I Want My Functions Back
Problem (unsolvable)

It is actually worse: HO functions are basically broken

(A →α B) →β C

The number of uses α is fixed once and for all

This completely prevents a fine analysis of its resources
What happens when the number of calls is not static?

What happens in practice: (a.k.a. fancy subtyping doesn’t work)

0 ⇝ runtime irrelevant terms (e.g. types)
1 ⇝ extremely rare cases (e.g. linear state-passing)
ω ⇝ all other cases

You have just reinvented a single runtime irrelevant modality

P.-M. Pédrot (INRIA) >implying implications 09/25 35 / 41

I Want My Functions Back
Problem (unsolvable)

It is actually worse: HO functions are basically broken

(A →α B) →β C
The number of uses α is fixed once and for all

This completely prevents a fine analysis of its resources
What happens when the number of calls is not static?

What happens in practice: (a.k.a. fancy subtyping doesn’t work)

0 ⇝ runtime irrelevant terms (e.g. types)
1 ⇝ extremely rare cases (e.g. linear state-passing)
ω ⇝ all other cases

You have just reinvented a single runtime irrelevant modality

P.-M. Pédrot (INRIA) >implying implications 09/25 35 / 41

I Want My Functions Back
Problem (unsolvable)

It is actually worse: HO functions are basically broken

(A →α B) →β C
The number of uses α is fixed once and for all

This completely prevents a fine analysis of its resources
What happens when the number of calls is not static?

What happens in practice: (a.k.a. fancy subtyping doesn’t work)

0 ⇝ runtime irrelevant terms (e.g. types)
1 ⇝ extremely rare cases (e.g. linear state-passing)
ω ⇝ all other cases

You have just reinvented a single runtime irrelevant modality

P.-M. Pédrot (INRIA) >implying implications 09/25 35 / 41

I Want My Functions Back
Problem (unsolvable)

It is actually worse: HO functions are basically broken

(A →α B) →β C
The number of uses α is fixed once and for all

This completely prevents a fine analysis of its resources
What happens when the number of calls is not static?

What happens in practice: (a.k.a. fancy subtyping doesn’t work)

0 ⇝ runtime irrelevant terms (e.g. types)
1 ⇝ extremely rare cases (e.g. linear state-passing)
ω ⇝ all other cases

You have just reinvented a single runtime irrelevant modality

P.-M. Pédrot (INRIA) >implying implications 09/25 35 / 41

I Want My Functions Back
Problem (unsolvable)

It is actually worse: HO functions are basically broken

(A →α B) →β C
The number of uses α is fixed once and for all

This completely prevents a fine analysis of its resources
What happens when the number of calls is not static?

What happens in practice: (a.k.a. fancy subtyping doesn’t work)

0 ⇝ runtime irrelevant terms (e.g. types)
1 ⇝ extremely rare cases (e.g. linear state-passing)
ω ⇝ all other cases

You have just reinvented a single runtime irrelevant modality
P.-M. Pédrot (INRIA) >implying implications 09/25 35 / 41

Obvious Progaganda is Obvious

To be fair, there have been proposals to extend the expressivity

... but in my opinion these are very contrived.

What if I told you

we already have a solution?

DIALECTICA
(what a surprise!)

P.-M. Pédrot (INRIA) >implying implications 09/25 36 / 41

Obvious Progaganda is Obvious

To be fair, there have been proposals to extend the expressivity

... but in my opinion these are very contrived.

What if I told you

we already have a solution?

DIALECTICA
(what a surprise!)

P.-M. Pédrot (INRIA) >implying implications 09/25 36 / 41

Obvious Progaganda is Obvious

To be fair, there have been proposals to extend the expressivity

... but in my opinion these are very contrived.

What if I told you

we already have a solution?

DIALECTICA
(what a surprise!)

P.-M. Pédrot (INRIA) >implying implications 09/25 36 / 41

The Main Idea

The semi-ring annotations should depend on terms

This is literally the only reason why we had to overapproximate.

A function should tell you dynamically its argument measure
Pattern-matching measure should depend on the scrutinee
This clearly requires dependent types

For this, we need to turn x :α X into something that looks like

Γ ⊢ M : A and x : X ∈ Γ ⇝ αx(M) : OΓ
A(X) → M

Wait, this is a Déjà Vu

Γ ⊢ M : A and x : X ∈ Γ ⇝ W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩

P.-M. Pédrot (INRIA) >implying implications 09/25 37 / 41

The Main Idea

The semi-ring annotations should depend on terms

This is literally the only reason why we had to overapproximate.

A function should tell you dynamically its argument measure
Pattern-matching measure should depend on the scrutinee
This clearly requires dependent types

For this, we need to turn x :α X into something that looks like

Γ ⊢ M : A and x : X ∈ Γ ⇝ αx(M) : OΓ
A(X) → M

Wait, this is a Déjà Vu

Γ ⊢ M : A and x : X ∈ Γ ⇝ W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩

P.-M. Pédrot (INRIA) >implying implications 09/25 37 / 41

The Main Idea

The semi-ring annotations should depend on terms

This is literally the only reason why we had to overapproximate.

A function should tell you dynamically its argument measure
Pattern-matching measure should depend on the scrutinee
This clearly requires dependent types

For this, we need to turn x :α X into something that looks like

Γ ⊢ M : A and x : X ∈ Γ ⇝ αx(M) : OΓ
A(X) → M

Wait, this is a Déjà Vu

Γ ⊢ M : A and x : X ∈ Γ ⇝ W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩

P.-M. Pédrot (INRIA) >implying implications 09/25 37 / 41

The Main Idea

The semi-ring annotations should depend on terms

This is literally the only reason why we had to overapproximate.

A function should tell you dynamically its argument measure
Pattern-matching measure should depend on the scrutinee
This clearly requires dependent types

For this, we need to turn x :α X into something that looks like

Γ ⊢ M : A and x : X ∈ Γ ⇝ αx(M) : OΓ
A(X) → M

Wait, this is a Déjà Vu

Γ ⊢ M : A and x : X ∈ Γ ⇝ W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩

P.-M. Pédrot (INRIA) >implying implications 09/25 37 / 41

A Bug In the Semi-Ring Matrix

What has been seen cannot be unseen

[x]y π := ∅ [x]x π := {π}
0Γ, x :1 A ⊢ x : A

[λy.M]x (y, π) := [M]x π
Γ, x :α A ⊢ M : B

Γ ⊢ λx.M : Π(x :α A).B

[M N]x π :=
[M]x ([N], π)

⊕
([M].2 [N] π >>= [N]x)

Γ ⊢ M : Π(x :α A).B ∆ ⊢ N : A
Γ + (α×∆) ⊢ M N : B{x := N}

P.-M. Pédrot (INRIA) >implying implications 09/25 38 / 41

Dialectica, Dialectica Everywhere

Dialectica is the HO dependent graded type of a term
The semiring is replaced by its oidification (a monad + comm. add. monoid)

Semiring values are now higher-order objects
In particular they depend on the arguments

This solves the graded expressivity issue

⇝ When pattern-matching over M : B, α ⊔ β becomes basically

if M then α else β

⇝ The argument of a function f has a now a highly dynamic annotation

φ : Π(x : W(A))(π : C(B)⟨f x⟩).M C(A)⟨x⟩ (before: a fixed M)

Furthermore grading can be stated internally!

P.-M. Pédrot (INRIA) >implying implications 09/25 39 / 41

Dialectica, Dialectica Everywhere

Dialectica is the HO dependent graded type of a term
The semiring is replaced by its oidification (a monad + comm. add. monoid)

Semiring values are now higher-order objects
In particular they depend on the arguments

This solves the graded expressivity issue

⇝ When pattern-matching over M : B, α ⊔ β becomes basically

if M then α else β

⇝ The argument of a function f has a now a highly dynamic annotation

φ : Π(x : W(A))(π : C(B)⟨f x⟩).M C(A)⟨x⟩ (before: a fixed M)

Furthermore grading can be stated internally!

P.-M. Pédrot (INRIA) >implying implications 09/25 39 / 41

Dialectica, Dialectica Everywhere

Dialectica is the HO dependent graded type of a term
The semiring is replaced by its oidification (a monad + comm. add. monoid)

Semiring values are now higher-order objects
In particular they depend on the arguments

This solves the graded expressivity issue

⇝ When pattern-matching over M : B, α ⊔ β becomes basically

if M then α else β

⇝ The argument of a function f has a now a highly dynamic annotation

φ : Π(x : W(A))(π : C(B)⟨f x⟩).M C(A)⟨x⟩ (before: a fixed M)

Furthermore grading can be stated internally!
P.-M. Pédrot (INRIA) >implying implications 09/25 39 / 41

So What?

I don’t know what to do of this

Is it known? Is it useful? It is practical?
Can we get a decidable type system?
Towards a full-blown synthetic complexity theory?

What do you think about all this?

⇝ I managed to attract the attention of M. D. at TLLA’24, the more the merrier.

P.-M. Pédrot (INRIA) >implying implications 09/25 40 / 41

So What?

I don’t know what to do of this

Is it known? Is it useful? It is practical?
Can we get a decidable type system?
Towards a full-blown synthetic complexity theory?

What do you think about all this?

⇝ I managed to attract the attention of M. D. at TLLA’24, the more the merrier.

P.-M. Pédrot (INRIA) >implying implications 09/25 40 / 41

Scribitur ad narrandum, non ad probandum

Thanks for your attention.

P.-M. Pédrot (INRIA) >implying implications 09/25 41 / 41

