
Richer type theories for arithmetic universes

Peter LeFanu Lumsdaine

Stockholm University

jww Sina Hazratpour, Steve Vickers

Synthetic mathematics, logic-affine computation and

efficient proof systems

CIRM Luminy, September 8 2025

1 / 17



Locoses, arithmetic universes

Definition

▶ A locos is a lextensive category with parametrised list objects.

▶ An arithmetic universe is an exact locos

= a pretopos with parametrised list objects.

What? Why?

2 / 17



Locoses, arithmetic universes

Definition

▶ A locos is a lextensive category with parametrised list objects.

▶ An arithmetic universe is an exact locos

= a pretopos with parametrised list objects.

What? Why?

2 / 17



AU’s: motivation and history

Idea of AU’s: Proposed by Joyal 1973, for categorical account of Gödel

incompleteness — more generally, finitistic mathematics.

Technical crux: Category with minimal structure permitting internal construction

of syntax, abstracting Gödel-numbering.

Initially unpublished; taken up in 90’s by Vickers, Maietti, Taylor and others.

Modern definition:

▶ Locos: list-arithmetic lextensive category

setting for (unquotiented) syntax

▶ Arithmetic universe: list-arithmetic pretopos = exact locos

setting for quotiented syntax = free algebraic structures

3 / 17



AU’s: motivation and history

Idea of AU’s: Proposed by Joyal 1973, for categorical account of Gödel

incompleteness — more generally, finitistic mathematics.

Technical crux: Category with minimal structure permitting internal construction

of syntax, abstracting Gödel-numbering.

Initially unpublished; taken up in 90’s by Vickers, Maietti, Taylor and others.

Modern definition:

▶ Locos: list-arithmetic lextensive category

setting for (unquotiented) syntax

▶ Arithmetic universe: list-arithmetic pretopos = exact locos

setting for quotiented syntax = free algebraic structures

3 / 17



AU’s: motivation and history

Idea of AU’s: Proposed by Joyal 1973, for categorical account of Gödel

incompleteness — more generally, finitistic mathematics.

Technical crux: Category with minimal structure permitting internal construction

of syntax, abstracting Gödel-numbering.

Initially unpublished; taken up in 90’s by Vickers, Maietti, Taylor and others.

Modern definition:

▶ Locos: list-arithmetic lextensive category

setting for (unquotiented) syntax

▶ Arithmetic universe: list-arithmetic pretopos = exact locos

setting for quotiented syntax = free algebraic structures

3 / 17



Locoses, AU’s

Definition (Maietti 2010)

A locos is a category that is:

▶ lex: all finite limits

▶ extensive: 0, +, with descent E/(A + B) � E/A × E/B

▶ list-arithemtic: parametrised list objects (including NNO)

An arithmetic universe is moreover:

▶ exact: regular, & every congruence a kernel pair

4 / 17



Locoses, AU’s, and their type theory

Definition (Maietti 2010, 1999, 2005)

A locos is a category that is:

▶ lex: all finite limits

. . . interprets DTT with 1, Σ, =

▶ extensive: 0, +, with descent E/(A + B) � E/A × E/B
. . . 0, +, with large eliminators

▶ list-arithemtic: parametrised list objects (including NNO)

. . . list types, naturals

An arithmetic universe is moreover:

▶ exact: regular, & every congruence a kernel pair

. . . effective quotient types

4 / 17



Motivating directions

Two previous projects that brought me to this:

▶ Rocq formalisation of syntax for general type theories (Bauer, Haselwarter

and Lumsdaine 2020)

Want to base it on natural/minimal type-theoretic primitives for formalising

syntax

▶ Makkai’s categorical proof of projectivity of N in free topos = rule of

countable choice for IHOL (jww Forssell, Swan)

Want minimal categorical setting for syntax / free models of structured

categories

5 / 17



Motivating directions

Two previous projects that brought me to this:

▶ Rocq formalisation of syntax for general type theories (Bauer, Haselwarter

and Lumsdaine 2020)

Want to base it on natural/minimal type-theoretic primitives for formalising

syntax

▶ Makkai’s categorical proof of projectivity of N in free topos = rule of

countable choice for IHOL (jww Forssell, Swan)

Want minimal categorical setting for syntax / free models of structured

categories

5 / 17



Formalisation of syntax

Syntax with contexts, binding:

▶ Finitary inductive family. . .

▶ . . . indexed over scopes/contexts

var : {n : N} Fin(n) Tm(n)
lam : {n : N} Tm(n + 1) Tm(n)

▶ N used just as a universe: never depend on equality on it, etc.

▶ Replacing with a larger (suitably-closed) universe gives infinitary syntax.

6 / 17



Formalisation of syntax

Syntax with contexts, binding:

▶ Finitary inductive family. . .

▶ . . . indexed over scopes/contexts

var : {n : N} Fin(n) Tm(n)
lam : {n : N} Tm(n + 1) Tm(n)

▶ N used just as a universe: never depend on equality on it, etc.

▶ Replacing with a larger (suitably-closed) universe gives infinitary syntax.

6 / 17



Formalisation of syntax

Syntax with contexts, binding:

▶ Finitary inductive family. . .

▶ . . . indexed over scopes/contexts

var : {n : N} Fin(n) Tm(n)
lam : {n : N} Tm(n + 1) Tm(n)

▶ N used just as a universe: never depend on equality on it, etc.

▶ Replacing with a larger (suitably-closed) universe gives infinitary syntax.

6 / 17



Free models in AU’s

What should “setting for syntax” mean?

Goal

AU’s should admit free models of finitely presented essentially algebraic theories

EAT’s: theories like the theory of categories,

i.e. multi-sorted algebraic; domains of operations defined equationally from earlier

operations.

Why EAT’s? Sufficient to

▶ build free internal AU (for Gödel incompleteness)

▶ present + handle syntax of most other logics (FOL, DTT, . . . )

7 / 17



Free models in AU’s

What should “setting for syntax” mean?

Goal

AU’s should admit free models of finitely presented essentially algebraic theories

EAT’s: theories like the theory of categories,

i.e. multi-sorted algebraic; domains of operations defined equationally from earlier

operations.

Why EAT’s? Sufficient to

▶ build free internal AU (for Gödel incompleteness)

▶ present + handle syntax of most other logics (FOL, DTT, . . . )

7 / 17



Free models of EAT’s in AU’s?

▶ Stated in Morrison 1996, but part of proof conjectural

▶ Many non-trivial special cases, in e.g. Maietti 1999

▶ . . . showing sufficient techniques to cover arbitrary examples

▶ Generally known/believed in folklore

▶ . . . but no full treatment in literature, to my knowledge

Why not?

8 / 17



Free models of EAT’s in AU’s?

▶ Stated in Morrison 1996, but part of proof conjectural

▶ Many non-trivial special cases, in e.g. Maietti 1999

▶ . . . showing sufficient techniques to cover arbitrary examples

▶ Generally known/believed in folklore

▶ . . . but no full treatment in literature, to my knowledge

Why not?

8 / 17



Presentations of EAT’s

▶ Algebraic: domains of operations defined equationally from theory so far

Problem: requires stratification!

▶ Dependently algebraic (GAT): sorts dependent over earlier contexts

Again, stratification.

▶ Finite limit categories

What does “finitely presented” mean?

▶ Finite limit sketches

Syntax/free model construction many-staged.

▶ FOL fragment =, ∧, ∃(!)
Stratification, again.

▶ Partial Horn logic/quasi-equational theories

Rather more tractable. . .

9 / 17



Presentations of EAT’s and their problems

▶ Algebraic: domains of operations defined equationally from theory so far

Problem: requires stratification!

▶ Dependently algebraic (GAT): sorts dependent over earlier contexts

Again, stratification.

▶ Finite limit categories

What does “finitely presented” mean?

▶ Finite limit sketches

Syntax/free model construction many-staged.

▶ FOL fragment =, ∧, ∃(!)
Stratification, again.

▶ Partial Horn logic/quasi-equational theories

Rather more tractable. . .

9 / 17



Presentations of EAT’s and their problems

▶ Algebraic: domains of operations defined equationally from theory so far

Problem: requires stratification!

▶ Dependently algebraic (GAT): sorts dependent over earlier contexts

Again, stratification.

▶ Finite limit categories

What does “finitely presented” mean?

▶ Finite limit sketches

Syntax/free model construction many-staged.

▶ FOL fragment =, ∧, ∃(!)
Stratification, again.

▶ Partial Horn logic/quasi-equational theories

Rather more tractable. . .

9 / 17



Presentations of EAT’s and their problems

▶ Algebraic: domains of operations defined equationally from theory so far

Problem: requires stratification!

▶ Dependently algebraic (GAT): sorts dependent over earlier contexts

Again, stratification.

▶ Finite limit categories

What does “finitely presented” mean?

▶ Finite limit sketches

Syntax/free model construction many-staged.

▶ FOL fragment =, ∧, ∃(!)
Stratification, again.

▶ Partial Horn logic/quasi-equational theories

Rather more tractable. . .

9 / 17



Presentations of EAT’s and their problems

▶ Algebraic: domains of operations defined equationally from theory so far

Problem: requires stratification!

▶ Dependently algebraic (GAT): sorts dependent over earlier contexts

Again, stratification.

▶ Finite limit categories

What does “finitely presented” mean?

▶ Finite limit sketches

Syntax/free model construction many-staged.

▶ FOL fragment =, ∧, ∃(!)
Stratification, again.

▶ Partial Horn logic/quasi-equational theories

Rather more tractable. . .

9 / 17



Presentations of EAT’s and their problems

▶ Algebraic: domains of operations defined equationally from theory so far

Problem: requires stratification!

▶ Dependently algebraic (GAT): sorts dependent over earlier contexts

Again, stratification.

▶ Finite limit categories

What does “finitely presented” mean?

▶ Finite limit sketches

Syntax/free model construction many-staged.

▶ FOL fragment =, ∧, ∃(!)
Stratification, again.

▶ Partial Horn logic/quasi-equational theories

Rather more tractable. . .

9 / 17



Presentations of EAT’s and their problems

▶ Algebraic: domains of operations defined equationally from theory so far

Problem: requires stratification!

▶ Dependently algebraic (GAT): sorts dependent over earlier contexts

Again, stratification.

▶ Finite limit categories

What does “finitely presented” mean?

▶ Finite limit sketches

Syntax/free model construction many-staged.

▶ FOL fragment =, ∧, ∃(!)
Stratification, again.

▶ Partial Horn logic/quasi-equational theories

Rather more tractable. . .

9 / 17



Presentations of EAT’s and their problems

▶ Algebraic: domains of operations defined equationally from theory so far

Problem: requires stratification!

▶ Dependently algebraic (GAT): sorts dependent over earlier contexts

Again, stratification.

▶ Finite limit categories

What does “finitely presented” mean?

▶ Finite limit sketches

Syntax/free model construction many-staged.

▶ FOL fragment =, ∧, ∃(!)
Stratification, again.

▶ Partial Horn logic/quasi-equational theories

Rather more tractable. . .

9 / 17



Presentations of EAT’s and their problems

▶ Algebraic: domains of operations defined equationally from theory so far

Problem: requires stratification!

▶ Dependently algebraic (GAT): sorts dependent over earlier contexts

Again, stratification.

▶ Finite limit categories

What does “finitely presented” mean?

▶ Finite limit sketches

Syntax/free model construction many-staged.

▶ FOL fragment =, ∧, ∃(!)

Stratification, again.

▶ Partial Horn logic/quasi-equational theories

Rather more tractable. . .

9 / 17



Presentations of EAT’s and their problems

▶ Algebraic: domains of operations defined equationally from theory so far

Problem: requires stratification!

▶ Dependently algebraic (GAT): sorts dependent over earlier contexts

Again, stratification.

▶ Finite limit categories

What does “finitely presented” mean?

▶ Finite limit sketches

Syntax/free model construction many-staged.

▶ FOL fragment =, ∧, ∃(!)
Stratification, again.

▶ Partial Horn logic/quasi-equational theories

Rather more tractable. . .

9 / 17



Presentations of EAT’s and their problems

▶ Algebraic: domains of operations defined equationally from theory so far

Problem: requires stratification!

▶ Dependently algebraic (GAT): sorts dependent over earlier contexts

Again, stratification.

▶ Finite limit categories

What does “finitely presented” mean?

▶ Finite limit sketches

Syntax/free model construction many-staged.

▶ FOL fragment =, ∧, ∃(!)
Stratification, again.

▶ Partial Horn logic/quasi-equational theories

Rather more tractable. . .

9 / 17



Presentations of EAT’s and their problems

▶ Algebraic: domains of operations defined equationally from theory so far

Problem: requires stratification!

▶ Dependently algebraic (GAT): sorts dependent over earlier contexts

Again, stratification.

▶ Finite limit categories

What does “finitely presented” mean?

▶ Finite limit sketches

Syntax/free model construction many-staged.

▶ FOL fragment =, ∧, ∃(!)
Stratification, again.

▶ Partial Horn logic/quasi-equational theories

Rather more tractable. . .

9 / 17



Partial Horn logic

Partial Horn logic (Palmgren and Vickers 2007): a logic of partial algebraic

theories.

Term syntax: ordinary multi-sorted finitary algebraic,

but operations understood as partial

Can include atomic predicates; for now omit these, quasi-equational

Axioms: finite conjunction of atomics entail an atomic

t1 = s1, . . . , tn = sn ⊢®x t = s

Reflexivity represents definedness: t = t , “t defined”.

Sufficent to express EAT’s, finitely presented if they are in any other sense.

10 / 17



Partial Horn logic

Partial Horn logic (Palmgren and Vickers 2007): a logic of partial algebraic

theories.

Term syntax: ordinary multi-sorted finitary algebraic,

but operations understood as partial

Can include atomic predicates; for now omit these, quasi-equational

Axioms: finite conjunction of atomics entail an atomic

t1 = s1, . . . , tn = sn ⊢®x t = s

Reflexivity represents definedness: t = t , “t defined”.

Sufficent to express EAT’s, finitely presented if they are in any other sense.

10 / 17



Partial Horn logic

Partial Horn logic (Palmgren and Vickers 2007): a logic of partial algebraic

theories.

Term syntax: ordinary multi-sorted finitary algebraic,

but operations understood as partial

Can include atomic predicates; for now omit these, quasi-equational

Axioms: finite conjunction of atomics entail an atomic

t1 = s1, . . . , tn = sn ⊢®x t = s

Reflexivity represents definedness: t = t , “t defined”.

Sufficent to express EAT’s, finitely presented if they are in any other sense.

10 / 17



Syntax/free models of quasi-equational theories

(Palmgren and Vickers 2007) construct free models, adjunctions, etc.,

working in non-formalised constructive, predicative metatheory.

They note: should internalise to predicative toposes, i.e. stratified pseudotoposes

(Moerdijk and Palmgren 2002).

In fact, entirely finitary; so should work in AU’s too.

For a thorough treatment, simpler than other presentations:

syntax 2-staged only,

▶ simple algebraic term syntax;

▶ derivations in equational logic over this

11 / 17



Syntax/free models of quasi-equational theories

(Palmgren and Vickers 2007) construct free models, adjunctions, etc.,

working in non-formalised constructive, predicative metatheory.

They note: should internalise to predicative toposes, i.e. stratified pseudotoposes

(Moerdijk and Palmgren 2002).

In fact, entirely finitary; so should work in AU’s too.

For a thorough treatment, simpler than other presentations:

syntax 2-staged only,

▶ simple algebraic term syntax;

▶ derivations in equational logic over this

11 / 17



Syntax/free models of quasi-equational theories

(Palmgren and Vickers 2007) construct free models, adjunctions, etc.,

working in non-formalised constructive, predicative metatheory.

They note: should internalise to predicative toposes, i.e. stratified pseudotoposes

(Moerdijk and Palmgren 2002).

In fact, entirely finitary; so should work in AU’s too.

For a thorough treatment, simpler than other presentations:

syntax 2-staged only,

▶ simple algebraic term syntax;

▶ derivations in equational logic over this

11 / 17



Syntax/free models of quasi-equational theories

(Palmgren and Vickers 2007) construct free models, adjunctions, etc.,

working in non-formalised constructive, predicative metatheory.

They note: should internalise to predicative toposes, i.e. stratified pseudotoposes

(Moerdijk and Palmgren 2002).

In fact, entirely finitary; so should work in AU’s too.

For a thorough treatment, simpler than other presentations:

syntax 2-staged only,

▶ simple algebraic term syntax;

▶ derivations in equational logic over this

11 / 17



Inductive types

W -types: types of trees; (stably) initial algebras for polynomial endofuntors.

Inductive types in DTT: general scheme of declarations, convenient for

programming. Typical example: simply-algebraic syntax.

Indexed inductive types/W -types: mild generalisation with more dependency.

Typical example: derivations in a logic.

Theorem (Dybjer 1997; Maietti and Sabelli 2023)

(Assuming standard basic types, some extensionality.)
CIC-style indexed-inductive types can be constructed from W-types.

12 / 17



Inductive types

W -types: types of trees; (stably) initial algebras for polynomial endofuntors.

Inductive types in DTT: general scheme of declarations, convenient for

programming. Typical example: simply-algebraic syntax.

Indexed inductive types/W -types: mild generalisation with more dependency.

Typical example: derivations in a logic.

Theorem (Dybjer 1997; Maietti and Sabelli 2023)

(Assuming standard basic types, some extensionality.)
CIC-style indexed-inductive types can be constructed from W-types.

12 / 17



Inductive types

W -types: types of trees; (stably) initial algebras for polynomial endofuntors.

Inductive types in DTT: general scheme of declarations, convenient for

programming. Typical example: simply-algebraic syntax.

Indexed inductive types/W -types: mild generalisation with more dependency.

Typical example: derivations in a logic.

Theorem (Dybjer 1997; Maietti and Sabelli 2023)

(Assuming standard basic types, some extensionality.)
CIC-style indexed-inductive types can be constructed from W-types.

12 / 17



Inductive types

W -types: types of trees; (stably) initial algebras for polynomial endofuntors.

Inductive types in DTT: general scheme of declarations, convenient for

programming. Typical example: simply-algebraic syntax.

Indexed inductive types/W -types: mild generalisation with more dependency.

Typical example: derivations in a logic.

Theorem (Dybjer 1997; Maietti and Sabelli 2023)

(Assuming standard basic types, some extensionality.)
CIC-style indexed-inductive types can be constructed from W-types.

12 / 17



Inductive types

W -types: types of trees; (stably) initial algebras for polynomial endofuntors.

Inductive types in DTT: general scheme of declarations, convenient for

programming. Typical example: simply-algebraic syntax.

Indexed inductive types/W -types: mild generalisation with more dependency.

Typical example: derivations in a logic.

Theorem (Dybjer 1997; Maietti and Sabelli 2023)

(Assuming standard basic types, some extensionality.)
CIC-style indexed-inductive types can be constructed from W-types.

12 / 17



Building up in locos/AU

Maietti: Locos interprets 1, Σ, 0, + (with large elims), =, N, List. [AU: also

truncation, effective quotients.]

⇝ N as universe of finite types, exponentiable, with funext [AU: admitting finite

choice, preserving quotients]

⇝ (internally) finitaryW -types

⇝ finitary inductive, indexed-inductive types

⇝ syntax of partial Horn logic

⇝ [AU: free models of EAT’s]

13 / 17



Building up in locos/AU

Maietti: Locos interprets 1, Σ, 0, + (with large elims), =, N, List. [AU: also

truncation, effective quotients.]

⇝ N as universe of finite types, exponentiable, with funext [AU: admitting finite

choice, preserving quotients]

⇝ (internally) finitaryW -types

⇝ finitary inductive, indexed-inductive types

⇝ syntax of partial Horn logic

⇝ [AU: free models of EAT’s]

13 / 17



Building up in locos/AU

Maietti: Locos interprets 1, Σ, 0, + (with large elims), =, N, List. [AU: also

truncation, effective quotients.]

⇝ N as universe of finite types, exponentiable, with funext [AU: admitting finite

choice, preserving quotients]

⇝ (internally) finitaryW -types

⇝ finitary inductive, indexed-inductive types

⇝ syntax of partial Horn logic

⇝ [AU: free models of EAT’s]

13 / 17



Building up in locos/AU

Maietti: Locos interprets 1, Σ, 0, + (with large elims), =, N, List. [AU: also

truncation, effective quotients.]

⇝ N as universe of finite types, exponentiable, with funext [AU: admitting finite

choice, preserving quotients]

⇝ (internally) finitaryW -types

⇝ finitary inductive, indexed-inductive types

⇝ syntax of partial Horn logic

⇝ [AU: free models of EAT’s]

13 / 17



Building up in locos/AU

Maietti: Locos interprets 1, Σ, 0, + (with large elims), =, N, List. [AU: also

truncation, effective quotients.]

⇝ N as universe of finite types, exponentiable, with funext [AU: admitting finite

choice, preserving quotients]

⇝ (internally) finitaryW -types

⇝ finitary inductive, indexed-inductive types

⇝ syntax of partial Horn logic

⇝ [AU: free models of EAT’s]

13 / 17



Building up in locos/AU

Maietti: Locos interprets 1, Σ, 0, + (with large elims), =, N, List. [AU: also

truncation, effective quotients.]

⇝ N as universe of finite types, exponentiable, with funext [AU: admitting finite

choice, preserving quotients]

⇝ (internally) finitaryW -types

⇝ finitary inductive, indexed-inductive types

⇝ syntax of partial Horn logic

⇝ [AU: free models of EAT’s]

13 / 17



Type theory for finitistic mathematics

▶ 1, Σ; = with reflection/K
▶ 0, +, with large eliminators; N, List

▶ [optional: effective quotients]

▶ universe F, closed under 1, Σ, 0, +, =
▶ dependent products over F-types, extensional, [commuting w. quotients]

▶ F-ary inductive types (W-types, or CIC-style scheme)

Theorem

This is conservative over Maietti’s type theory for AU’s. □

Closely comparable: Calculus of Primitive Recursive Constructions (Patey and

Herbelin 2014)
1
, Primitive Recursive Type Theory (Buchholtz and Branitz 2024).

1
Thanks to Ulrik Buchholtz for bringing this to my attention after the talk!

14 / 17



Type theory for finitistic mathematics

▶ 1, Σ; = with reflection/K
▶ 0, +, with large eliminators; N, List

▶ [optional: effective quotients]

▶ universe F, closed under 1, Σ, 0, +, =
▶ dependent products over F-types, extensional, [commuting w. quotients]

▶ F-ary inductive types (W-types, or CIC-style scheme)

Theorem

This is conservative over Maietti’s type theory for AU’s. □

Closely comparable: Calculus of Primitive Recursive Constructions (Patey and

Herbelin 2014)
1
, Primitive Recursive Type Theory (Buchholtz and Branitz 2024).

1
Thanks to Ulrik Buchholtz for bringing this to my attention after the talk!

14 / 17



Type theory for finitistic mathematics

▶ 1, Σ; = with reflection/K
▶ 0, +, with large eliminators; N, List

▶ [optional: effective quotients]

▶ universe F, closed under 1, Σ, 0, +, =
▶ dependent products over F-types, extensional, [commuting w. quotients]

▶ F-ary inductive types (W-types, or CIC-style scheme)

Theorem

This is conservative over Maietti’s type theory for AU’s. □

Closely comparable: Calculus of Primitive Recursive Constructions (Patey and

Herbelin 2014)
1
, Primitive Recursive Type Theory (Buchholtz and Branitz 2024).

1
Thanks to Ulrik Buchholtz for bringing this to my attention after the talk!

14 / 17



Type theory for finitistic mathematics

▶ 1, Σ; = with reflection/K
▶ 0, +, with large eliminators; N, List

▶ [optional: effective quotients]

▶ universe F, closed under 1, Σ, 0, +, =
▶ dependent products over F-types, extensional, [commuting w. quotients]

▶ F-ary inductive types (W-types, or CIC-style scheme)

Theorem

This is conservative over Maietti’s type theory for AU’s. □

Closely comparable: Calculus of Primitive Recursive Constructions (Patey and

Herbelin 2014)
1
, Primitive Recursive Type Theory (Buchholtz and Branitz 2024).

1
Thanks to Ulrik Buchholtz for bringing this to my attention after the talk!

14 / 17



Formalisation: logical framework

Formalisation in Rocq (WIP with Sina Hazratpour): How to avoid over-powered

type theory?

▶ Use Rocq’s type theory as logical framework

▶ Posit type-class of small/internal types for types of finitistic type theory
▶ Eliminators of internal inductives have type-class constraints

▶ Should be conservative over finitistic type theory, by established LF

(pre)sheaf methods (WIP)

Is this synthetic mathematics now?

Would Hilbert like it?

15 / 17



Formalisation: logical framework

Formalisation in Rocq (WIP with Sina Hazratpour): How to avoid over-powered

type theory?

▶ Use Rocq’s type theory as logical framework

▶ Posit type-class of small/internal types for types of finitistic type theory
▶ Eliminators of internal inductives have type-class constraints

▶ Should be conservative over finitistic type theory, by established LF

(pre)sheaf methods (WIP)

Is this synthetic mathematics now?

Would Hilbert like it?

15 / 17



Formalisation: logical framework

Formalisation in Rocq (WIP with Sina Hazratpour): How to avoid over-powered

type theory?

▶ Use Rocq’s type theory as logical framework

▶ Posit type-class of small/internal types for types of finitistic type theory
▶ Eliminators of internal inductives have type-class constraints

▶ Should be conservative over finitistic type theory, by established LF

(pre)sheaf methods (WIP)

Is this synthetic mathematics now?

Would Hilbert like it?

15 / 17



Formalisation: logical framework

Formalisation in Rocq (WIP with Sina Hazratpour): How to avoid over-powered

type theory?

▶ Use Rocq’s type theory as logical framework

▶ Posit type-class of small/internal types for types of finitistic type theory
▶ Eliminators of internal inductives have type-class constraints

▶ Should be conservative over finitistic type theory, by established LF

(pre)sheaf methods (WIP)

Is this synthetic mathematics now?

Would Hilbert like it?

15 / 17



Formalisation: logical framework

Formalisation in Rocq (WIP with Sina Hazratpour): How to avoid over-powered

type theory?

▶ Use Rocq’s type theory as logical framework

▶ Posit type-class of small/internal types for types of finitistic type theory
▶ Eliminators of internal inductives have type-class constraints

▶ Should be conservative over finitistic type theory, by established LF

(pre)sheaf methods (WIP)

Is this synthetic mathematics now?

Would Hilbert like it?

15 / 17



Summary

▶ Locoses: home of syntax

▶ Arithmetic universes: home of quotiented syntax = free models for EAT’s

▶ Quasi-equational presentation of EAT’s: requires just two stages of

indexed-inductives for syntax

▶ Can build up to finitary indexed-inductives from locos/AU primitives, via

finitaryW -types (Rocq formalisation in progress)

▶ Abstract the resulting language as a rich dependent type theory for finitistic

mathematics

16 / 17



Literature

▶ Alan Morrison (1996). ‘Reasoning in Arithmetic Universes’. MA thesis. url:

https://sjvickers.github.io/MorrisonAUs.pdf

▶ Maria Emilia Maietti (1999). The typed calculus of arithmetic universes. Tech. report, U. Birmingham,

CSR-99-14

▶ Maria Emilia Maietti (2010). ‘Joyal’s arithmetic universe as list-arithmetic pretopos’. url:

http://www.tac.mta.ca/tac/volumes/24/3/24-03abs.html

▶ Erik Palmgren and Steven J. Vickers (2007). ‘Partial horn logic and Cartesian categories’. doi:

10.1016/j.apal.2006.10.001

▶ Peter Dybjer (1997). ‘Representing inductively defined sets by wellorderings in Martin-Löf’s type

theory’.

▶ Maria Emilia Maietti and Pietro Sabelli (Nov. 2023). ‘A topological counterpart of well-founded trees

in dependent type theory’. doi: 10.46298/entics.11755. arXiv: 2308.08404

▶ Ludovic Patey (2014). ‘A calculus of primitive recursive constructions’. Slides from talk at IHP 2014;

joint work with Hugo Herbelin. url: https://ludovicpatey.com/media/talks/cprc.pdf

▶ Ulrik Buchholtz and Johannes Schipp von Branitz (2024). Primitive Recursive Dependent Type Theory.
Preprint. arXiv: 2404.01011

17 / 17

https://sjvickers.github.io/MorrisonAUs.pdf
http://www.tac.mta.ca/tac/volumes/24/3/24-03abs.html
https://doi.org/10.1016/j.apal.2006.10.001
https://doi.org/10.46298/entics.11755
https://arxiv.org/abs/2308.08404
https://ludovicpatey.com/media/talks/cprc.pdf
https://arxiv.org/abs/2404.01011

