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Locoses, arithmetic universes

Definition
> A locos is a lextensive category with parametrised list objects.
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AU’s: motivation and history

Idea of AU’s: Proposed by Joyal 1973, for categorical account of Godel
incompleteness — more generally, finitistic mathematics.

Technical crux: Category with minimal structure permitting internal construction
of syntax, abstracting Gédel-numbering.

Initially unpublished; taken up in 90’s by Vickers, Maietti, Taylor and others.
Modern definition:
» Locos: list-arithmetic lextensive category
setting for (unquotiented) syntax
> Arithmetic universe: list-arithmetic pretopos = exact locos

setting for quotiented syntax = free algebraic structures
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Locoses, AU’s

Definition (Maietti 2010)

A locos is a category that is:

> lex: all finite limits
> extensive: 0, +, with descent &/(A+ B) = E/AX E/B
> list-arithemtic: parametrised list objects (including NNO)

An arithmetic universe is moreover:

> exact: regular, & every congruence a kernel pair
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Locoses, AU’s, and their type theory

Definition (Maietti 2010, 1999, 2005)

A locos is a category that is:

» lex: all finite limits
...interprets DTT with 1, %, =

> extensive: 0, +, with descent §/(A+ B) = E/AX E/B
...0, +, with large eliminators

> list-arithemtic: parametrised list objects (including NNO)
... list types, naturals

An arithmetic universe is moreover:

> exact: regular, & every congruence a kernel pair
...effective quotient types
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Motivating directions
Two previous projects that brought me to this:

> Rocq formalisation of syntax for general type theories (Bauer, Haselwarter
and Lumsdaine 2020)

Want to base it on natural/minimal type-theoretic primitives for formalising
syntax
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Motivating directions
Two previous projects that brought me to this:

> Rocq formalisation of syntax for general type theories (Bauer, Haselwarter
and Lumsdaine 2020)

Want to base it on natural/minimal type-theoretic primitives for formalising
syntax

> Makkai’s categorical proof of projectivity of N in free topos = rule of
countable choice for IHOL (jww Forssell, Swan)

Want minimal categorical setting for syntax / free models of structured
categories
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Formalisation of syntax

Syntax with contexts, binding:
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Formalisation of syntax

Syntax with contexts, binding:

> Finitary inductive family...

> ...indexed over scopes/contexts

var : {n: N} — Fin(n) — Tm(n)

lam: {n: N} —Tm(n+ 1) — Tm(n)

» N used just as a universe: never depend on equality on it, etc.

> Replacing with a larger (suitably-closed) universe gives infinitary syntax.
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Free models in AU’s

What should “setting for syntax” mean?

Goal

AU’s should admit free models of finitely presented essentially algebraic theories
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Free models in AU’s
What should “setting for syntax” mean?

Goal

AU’s should admit free models of finitely presented essentially algebraic theories

EAT’s: theories like the theory of categories,
i.e. multi-sorted algebraic; domains of operations defined equationally from earlier
operations.

Why EAT’s? Sufficient to
» build free internal AU (for Godel incompleteness)

> present + handle syntax of most other logics (FOL, DTT, ...)
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Free models of EAT’s in AU’s?

Stated in Morrison 1996, but part of proof conjectural
Many non-trivial special cases, in e.g. Maietti 1999
...showing sufficient techniques to cover arbitrary examples

Generally known/believed in folklore

vV vy vy yVvYyy

...but no full treatment in literature, to my knowledge
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Free models of EAT’s in AU’s?

Stated in Morrison 1996, but part of proof conjectural
Many non-trivial special cases, in e.g. Maietti 1999
...showing sufficient techniques to cover arbitrary examples

Generally known/believed in folklore

vV vy vy yVvYyy

...but no full treatment in literature, to my knowledge

Why not?
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Presentations of EAT’s

> Algebraic: domains of operations defined equationally from theory so far
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Presentations of EAT’s and their problems

>

Algebraic: domains of operations defined equationally from theory so far
Problem: requires stratification!

Dependently algebraic (GAT): sorts dependent over earlier contexts
Again, stratification.
Finite limit categories

What does “finitely presented” mean?

Finite limit sketches
Syntax/free model construction many-staged.

FOL fragment =, A, 3(!)
Stratification, again.
Partial Horn logic/quasi-equational theories

Rather more tractable...
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Partial Horn logic

Partial Horn logic (Palmgren and Vickers 2007): a logic of partial algebraic
theories.

Term syntax: ordinary multi-sorted finitary algebraic,
but operations understood as partial

Can include atomic predicates; for now omit these, quasi-equational

Axioms: finite conjunction of atomics entail an atomic
=S, ....,5h=Skxt=s

Reflexivity represents definedness: t = ¢, “t defined”.
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Partial Horn logic

Partial Horn logic (Palmgren and Vickers 2007): a logic of partial algebraic
theories.

Term syntax: ordinary multi-sorted finitary algebraic,
but operations understood as partial

Can include atomic predicates; for now omit these, quasi-equational

Axioms: finite conjunction of atomics entail an atomic
=S, ....,5h=Skxt=s
Reflexivity represents definedness: t = ¢, “t defined”.

Sufficent to express EAT’s, finitely presented if they are in any other sense.
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Syntax/free models of quasi-equational theories

(Palmgren and Vickers 2007) construct free models, adjunctions, etc.,
working in non-formalised constructive, predicative metatheory.

They note: should internalise to predicative toposes, i.e. stratified pseudotoposes
(Moerdijk and Palmgren 2002).

In fact, entirely finitary; so should work in AU’s too.

For a thorough treatment, simpler than other presentations:
syntax 2-staged only,

> simple algebraic term syntax;

» derivations in equational logic over this
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Building up in locos/AU

Maietti: Locos interprets 1, %, 0, + (with large elims), =, N, List. [AU: also
truncation, effective quotients.]

~» N as universe of finite types, exponentiable, with funext [AU: admitting finite
choice, preserving quotients]

~» (internally) finitary W-types

~» finitary inductive, indexed-inductive types
~» syntax of partial Horn logic
S

[AU: free models of EAT’s]
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Type theory for finitistic mathematics

1, 2; = with reflection/K

0, +, with large eliminators; N, List
[optional: effective quotients]
universe F, closed under 1, 2, 0, +, =

dependent products over F-types, extensional, [commuting w. quotients]

vV vy Vv vV VY

F-ary inductive types (W-types, or CIC-style scheme)

Thanks to Ulrik Buchholtz for bringing this to my attention after the talk!
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Formalisation: logical framework

Formalisation in Rocq (WIP with Sina Hazratpour): How to avoid over-powered
type theory?

> Use Rocq’s type theory as logical framework

> Posit type-class of small/internal types for types of finitistic type theory
» Eliminators of internal inductives have type-class constraints
>

Should be conservative over finitistic type theory, by established LF
(pre)sheaf methods (WIP)

Is this synthetic mathematics now?

Would Hilbert like it?
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Summary

> Locoses: home of syntax

> Arithmetic universes: home of quotiented syntax = free models for EAT’s

> Quasi-equational presentation of EAT’s: requires just two stages of
indexed-inductives for syntax

» Can build up to finitary indexed-inductives from locos/AU primitives, via
finitary W-types (Rocq formalisation in progress)

> Abstract the resulting language as a rich dependent type theory for finitistic
mathematics
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