
CAP – a categorical (re)organization of computer algebra

Mohamed Barakat

Synthetic mathematics, logic-affine computation
and efficient proof systems

CIRM, Luminy
8 – 12 September, 2025

Joint work with Sebastian Posur, Kamal Saleh, Fabian Zickgraf, Tom Kuhmichel,
Juan Cuadra Díaz

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

http://homalg-project.github.io/
https://mohamed-barakat.github.io/
https://sebastianpos.github.io
https://github.com/kamalsaleh
https://github.com/zickgraf
https://github.com/TKuh
https://w3.ual.es/~jcdiaz/indexing.htm
https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Motivation: A typical scenario in computer algebra

Kaplansky’s fifth conjecture
A finite dimensional semisimple Hopf-algebra A over a field F is cocommutative.

Juan asked me the following in June 2024:
● Consider F -algebra A = F × F × F 2×2 of dimension 6

● Classify bi- and Hopf algebra structures over A when char(F ) ∣ 6
● Check Kaplansky’s fifth conjecture

Software demo

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


The motivation for the CAP project

● homalg was well-desigend for the intended application
● however, not modular enough to cover more applications
● implementing more complicated categories became increasingly difficult, e.g.,
● generalizing from f.p. modules to coh. sheaves was a pain

Rectify: Take category theory more seriously
● category theory should guide all design decisions
● categories, functors, ... should become first class citizens
● turn category theory into a programming language:
● write all algorithms using categorical vocabulary

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


A categorical tower for AbelianClosure

A categorical tower of biadjunction yields AbelianClosure as a categorical tower
of 2-adjunctions:

Quivs Cat k-Cat ⋯ Abel

PathCategory k[−]

U

⊣

U

⊣

AbelianClosure

U

⊣

U

⊣

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Zooming in

FiniteCocompletion as a categorical tower of biadjunctions

k-Cat k-Add k-Cocomp

AdditiveClosure

FiniteCocompletion

Freyd

U

⊣

U

⊣

● AdditiveClosure formally adds direct sums
● AdditiveClosure invents matrices
● Freyd formally adds cokernels
● Freyd is a quotient of the arrow category

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Free-forgetful 2-adjunctions

The above tower of categorical constructors is typically composed of several
free-forgetful 2-adjunctions

D E
L

U

⊣

between a 2-category D of categories (called doctrine) and another doctrine E of
categories with extra structure.

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Software demo

https://homalg-project.github.io/nb/DigraphOfKnownDoctrines

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://homalg-project.github.io/nb/DigraphOfKnownDoctrines
https://mohamed-barakat.github.io/
http://homalg-project.github.io/


FiniteCompletions
The dual category construction is also a 2-adjunction on each doctrine

D Dco−dual

L = Opposite

R = Opposite

⊣

Implementing Opposite requires a lot of meta programming.

More categorical towers of biadjunctions
● CoFreyd ∶= Opposite ○ Freyd ○ Opposite
● FiniteCompletion ∶= Opposite ○ FiniteCocompletion ○ Opposite
● FpCoPreSheaves ∶= Opposite ○ FpPreSheaves ○ Opposite
● CategoryOfComonoids ∶= Opposite ○ CategoryOfMonoids ○ Opposite

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Simplest diagram chasing: The connecting morphism

Snake Lemma: Given three composable morphisms A
aÐ→ B

bÐ→ C
cÐ→D in an

Abelian category with abc = 0.

A B

C D

a

b
c

coker(a)d

e

ker(e)
f

ker(c)
g

h

coker(h)
i s

ker(b)
j

coker(b)k

↝ ∃ an ess. unique natural morphism ker(e) sÐ→ coker(h) with

ker(b)
j
Ð→ ker(e) sÐ→ coker(h) kÐ→ coker(b) an exact sequence.

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


A computational proof of the snake lemma

Software demo

https://homalg-project.github.io/nb/SnakeInFreeAbelian

Exercise: Along the same lines treat spectral sequences of bicomplexes.

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://homalg-project.github.io/nb/SnakeInFreeAbelian
https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Spectral sequences of bicomplexes

p

q

E00
2 E10

2 E20
2 E30

2 E40
2

E01
2 E11

2 E21
2 E31

2 E41
2

E02
2 E12

2 E22
2 E32

2 E42
2

E03
2 E13

2 E23
2 E33

2 E43
2

v00 v10 v20 v30 v40

v01 v11 v21 v31 v41

v02 v12 v22 v32 v42

h00 h10 h20 h30

h01 h11 h21 h31

h02 h12 h22 h32

h03 h13 h23 h33

∂01
2 ∂11

2 ∂21
2

∂02
2 ∂12

2 ∂22
2

∂03
2 ∂13

2 ∂23
2

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Extracting the snake lemma program
Having constructed the connecting morphism s in the syntactically free model

L (D) = AbelianClosure(Q[A aÐ→ B
bÐ→ C

cÐ→D]/abc
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

D

)

we can apply the counit of the adjunction (the syntax-semantics-evaluation)

εL (D) ∶L (U (L (D))) →L (D)

to the syntactic s an extract the program

ConnectingMorphism ∶= function(a, b, c)
k ∶= KernelEmbedding(b ⋅ c); ℓ ∶= KernelLift(b ⋅ c, a);
InverseForMorphisms(
CokernelColift(ℓ,KernelLift(CokernelColift(a, b ⋅ c), k ⋅ CokernelProjection(a)))) ⋅

CokernelColift(ℓ,KernelLift(c, k ⋅ b) ⋅ CokernelProjection(KernelLift(c, a ⋅ b)));

(up to some rewriting rules in AbelianClosure(D)).
Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Examples of categorical towers
We can model
● free left R-modules of finite rank via C(R)⊕

● free right R-modules of finite rank via (C(R)⊕)op

● finitely presented left R-modules via Freyd(C(R)⊕)
● finitely presented right R-modules via Freyd((C(R)⊕)op)
● quivers via Func(C(A⇉ V),Sets)

● ZX-diagrams via Sub(Csp(Slice(Func(C(A⇉ V),Sets))))

● free Abelian categories for theorem proving via Freyd(Freyd(((−)⊕)op)op)

● linear representations of a group G over a field k via Func(C(G), k⊕)
● radical ideals of a ring R via StablePoset(Poset(Slice(C(R)⊕)))

Advantages:
● Reusability: Building blocks can appear in multiple different contexts.
● Separation of concerns: Focus on a single concept at a time.
● Verifiability: Every constructor has a limited scope.
● Emergence: The whole is greater than the sum of its parts.

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Effects on computer implementations

● Efficient development thanks to
● reusability
● separation of concerns
● verifiability
● emergence

● Inefficient execution due to computational overhead :-(
● Solution: compilation

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Overhead of boxing and unboxing

Freyd((C(R)⊕)op)

(C(R)⊕)op
⋮

R

input intermediate result result

first operation second operation

∣

CompilerForCAP
↓

Freyd((C(R)⊕)op)

(C(R)⊕)op
⋮

R

input result

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


© 2024 Kamal Saleh

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Benchmarks

Consider a computation in the categorical tower

Freyd((C(R)⊕)op) ≃ fpmod-R

problem size original code (s) compiled code (s) factor
1 0.2 0.05 ≈ 5
2 2.4 0.06 ≈ 50
3 19.1 0.07 ≈ 250
4 118.9 0.09 ≈ 1250
5 584.5 0.12 ≈ 5000

10 N/A 0.35 N/A
20 N/A 1.34 N/A
30 N/A 3.53 N/A

We see a difference between “finishes in seconds” and “will never finish”.
Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Further applications

CompilerForCAP can also be used
● for removing additional sources of overhead,
● apply categorical and mathematical rewriting rules while compiling
● as a simple-minded proof assistant for verifying categorical implementations

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Conclusion

● Algorithmic category theory is a high-level programming language
● Using this language for building categorical towers allows

● to reach a wide range of advanced and complex applications
● allowing reusability, separation of concerns, verifiability, and emergence

● This approach naturally comes with a computational overhead.
● CompilerForCAP can avoid this overhead, allowing us to make full use of

the advantages of building categorical towers

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Thank you

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/

