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Motivation: A typical scenario in computer algebra

Kaplansky’s fifth conjecture
A finite dimensional semisimple Hopf-algebra A over a field F is cocommutative.

Juan asked me the following in June 2024:
● Consider F -algebra A = F × F × F 2×2 of dimension 6

● Classify bi- and Hopf algebra structures over A when char(F ) ∣ 6
● Check Kaplansky’s fifth conjecture

Software demo
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The motivation for the CAP project

● homalg was well-desigend for the intended application
● however, not modular enough to cover more applications
● implementing more complicated categories became increasingly difficult, e.g.,
● generalizing from f.p. modules to coh. sheaves was a pain

Rectify: Take category theory more seriously
● category theory should guide all design decisions
● categories, functors, ... should become first class citizens
● turn category theory into a programming language:
● write all algorithms using categorical vocabulary
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A categorical tower for AbelianClosure

A categorical tower of biadjunction yields AbelianClosure as a categorical tower
of 2-adjunctions:

Quivs Cat k-Cat ⋯ Abel

PathCategory k[−]

U

⊣

U

⊣

AbelianClosure

U

⊣

U

⊣
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Zooming in

FiniteCocompletion as a categorical tower of biadjunctions

k-Cat k-Add k-Cocomp

AdditiveClosure

FiniteCocompletion

Freyd

U

⊣

U

⊣

● AdditiveClosure formally adds direct sums
● AdditiveClosure invents matrices
● Freyd formally adds cokernels
● Freyd is a quotient of the arrow category
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Free-forgetful 2-adjunctions

The above tower of categorical constructors is typically composed of several
free-forgetful 2-adjunctions

D E
L

U

⊣

between a 2-category D of categories (called doctrine) and another doctrine E of
categories with extra structure.
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Software demo

https://homalg-project.github.io/nb/DigraphOfKnownDoctrines
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FiniteCompletions
The dual category construction is also a 2-adjunction on each doctrine

D Dco−dual

L = Opposite

R = Opposite

⊣

Implementing Opposite requires a lot of meta programming.

More categorical towers of biadjunctions
● CoFreyd ∶= Opposite ○ Freyd ○ Opposite
● FiniteCompletion ∶= Opposite ○ FiniteCocompletion ○ Opposite
● FpCoPreSheaves ∶= Opposite ○ FpPreSheaves ○ Opposite
● CategoryOfComonoids ∶= Opposite ○ CategoryOfMonoids ○ Opposite
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Simplest diagram chasing: The connecting morphism

Snake Lemma: Given three composable morphisms A
aÐ→ B

bÐ→ C
cÐ→D in an

Abelian category with abc = 0.

A B

C D

a

b
c

coker(a)d

e

ker(e)
f

ker(c)
g

h

coker(h)
i s

ker(b)
j

coker(b)k

↝ ∃ an ess. unique natural morphism ker(e) sÐ→ coker(h) with

ker(b)
j
Ð→ ker(e) sÐ→ coker(h) kÐ→ coker(b) an exact sequence.
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A computational proof of the snake lemma

Software demo

https://homalg-project.github.io/nb/SnakeInFreeAbelian

Exercise: Along the same lines treat spectral sequences of bicomplexes.
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Spectral sequences of bicomplexes

p

q

E00
2 E10

2 E20
2 E30

2 E40
2

E01
2 E11

2 E21
2 E31

2 E41
2

E02
2 E12

2 E22
2 E32

2 E42
2

E03
2 E13

2 E23
2 E33

2 E43
2

v00 v10 v20 v30 v40

v01 v11 v21 v31 v41

v02 v12 v22 v32 v42

h00 h10 h20 h30

h01 h11 h21 h31

h02 h12 h22 h32

h03 h13 h23 h33

∂01
2 ∂11

2 ∂21
2

∂02
2 ∂12

2 ∂22
2

∂03
2 ∂13

2 ∂23
2
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Extracting the snake lemma program
Having constructed the connecting morphism s in the syntactically free model

L (D) = AbelianClosure(Q[A aÐ→ B
bÐ→ C

cÐ→D]/abc
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

D

)

we can apply the counit of the adjunction (the syntax-semantics-evaluation)

εL (D) ∶L (U (L (D))) →L (D)

to the syntactic s an extract the program

ConnectingMorphism ∶= function(a, b, c)
k ∶= KernelEmbedding(b ⋅ c); ℓ ∶= KernelLift(b ⋅ c, a);
InverseForMorphisms(
CokernelColift(ℓ,KernelLift(CokernelColift(a, b ⋅ c), k ⋅ CokernelProjection(a)))) ⋅

CokernelColift(ℓ,KernelLift(c, k ⋅ b) ⋅ CokernelProjection(KernelLift(c, a ⋅ b)));

(up to some rewriting rules in AbelianClosure(D)).
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Examples of categorical towers
We can model
● free left R-modules of finite rank via C(R)⊕

● free right R-modules of finite rank via (C(R)⊕)op

● finitely presented left R-modules via Freyd(C(R)⊕)
● finitely presented right R-modules via Freyd((C(R)⊕)op)
● quivers via Func(C(A⇉ V),Sets)

● ZX-diagrams via Sub(Csp(Slice(Func(C(A⇉ V),Sets))))

● free Abelian categories for theorem proving via Freyd(Freyd(((−)⊕)op)op)

● linear representations of a group G over a field k via Func(C(G), k⊕)
● radical ideals of a ring R via StablePoset(Poset(Slice(C(R)⊕)))

Advantages:
● Reusability: Building blocks can appear in multiple different contexts.
● Separation of concerns: Focus on a single concept at a time.
● Verifiability: Every constructor has a limited scope.
● Emergence: The whole is greater than the sum of its parts.
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Effects on computer implementations

● Efficient development thanks to
● reusability
● separation of concerns
● verifiability
● emergence

● Inefficient execution due to computational overhead :-(
● Solution: compilation
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Overhead of boxing and unboxing

Freyd((C(R)⊕)op)

(C(R)⊕)op
⋮

R

input intermediate result result

first operation second operation

∣

CompilerForCAP
↓

Freyd((C(R)⊕)op)

(C(R)⊕)op
⋮

R

input result
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© 2024 Kamal Saleh
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Benchmarks

Consider a computation in the categorical tower

Freyd((C(R)⊕)op) ≃ fpmod-R

problem size original code (s) compiled code (s) factor
1 0.2 0.05 ≈ 5
2 2.4 0.06 ≈ 50
3 19.1 0.07 ≈ 250
4 118.9 0.09 ≈ 1250
5 584.5 0.12 ≈ 5000

10 N/A 0.35 N/A
20 N/A 1.34 N/A
30 N/A 3.53 N/A

We see a difference between “finishes in seconds” and “will never finish”.
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Further applications

CompilerForCAP can also be used
● for removing additional sources of overhead,
● apply categorical and mathematical rewriting rules while compiling
● as a simple-minded proof assistant for verifying categorical implementations
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Conclusion

● Algorithmic category theory is a high-level programming language
● Using this language for building categorical towers allows

● to reach a wide range of advanced and complex applications
● allowing reusability, separation of concerns, verifiability, and emergence

● This approach naturally comes with a computational overhead.
● CompilerForCAP can avoid this overhead, allowing us to make full use of

the advantages of building categorical towers
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Thank you
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