

Maria Emilia Maietti

University of Padova

CIRM workshop, Luminy, 8-12/9/25

"Synthetic mathematics, logic-affine computation and efficient proof systems."

Abstract

- What, Why, How
 about the Minimalist Foundation (MF) for constructive maths
 and its relation to Coquand-Huet's Calculus of Constructions (CC)
 - ullet consistency of both levels of MF + Church Thesis of λ -functions (TCT)
 - + Brouwer's Continuity principles
 - ullet consistency of CC + TCT + Brouwer's Continuity principles
 - Open problems

why developing Constructive Mathematics?

Bishop

wrote

the book "Foundations of constructive analysis" to show that a large portion of functional analysis can be reproduced constructively i.e.

with proofs having a computational contents so that the existence of an object

can be computed by a machine

and axiom of choice is valid

Essence of constructive mathematics

constructive mathematics

=

IMPLICIT computational mathematics

made **EXPLICIT**

in computable models

validating Church thesis CT

+ at least

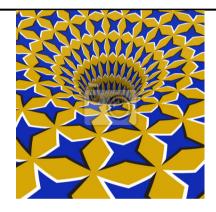
number-theoretic Axiom of choice AC

for program-extraction from proofs

A principle of Effectiveness: Church Thesis


```
(\mathbf{CT}) \begin{tabular}{l} \forall x \in \mathsf{N}at \ \exists! \ y \in \mathsf{N}at \ R(x,y) \\ \exists \mathbf{e} \in \mathsf{N}at \ (\forall x \in \mathsf{N}at \ \exists y \in \mathsf{N}at \ T(\mathbf{e},x,y) \ \& \ R(x,U(y))) \end{table}
```

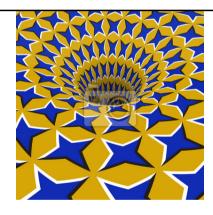
Number-theoretic Axiom of choice



 $(AC_{Nat,Nat})$ $\forall x \in Nat \ \exists y \in Nat \ R(x,y) \longrightarrow$ $\exists f \in Nat \to Nat \ \forall x \in Nat \ R(x,f(x))$

from any total relation we can extract a function

Axiom of choice



 $(AC) \quad \forall x \in A \ \exists y \in B \ R(x,y) \ \longrightarrow \ \exists f \in A \to B \ \forall x \in A \ R(x, f(x))$

from any total relation we can extract a function

Church Thesis is one discriminating property for constructivity

Consistency with Church Thesis

discriminates classical from constructive arithmetics:

because

Heyting Arithmetics (=constructive Arithmetics)+ CT

is consistent

being validated in Kleene realizability semantics

while classical Peano Arithmetics +CT $\vdash \bot$

i.e. inconsistent!

What best foundation for constructive mathematics ??

Since the 80s various foundations for Bishop's constructive mathematics appeared including

Martin-Löf's type theory

Aczel set theory

Homotopy type theory

. . .

with different behaviour w.r.t axiom of choice

Different behaviours of AC in constructive mathematics

in 1967, Bishop stated,

"A choice function exists in constructive mathematics,

because it is implied by the very meaning of existence"

... due to Brouwer-Heyting-Kolmogorov interpretation of INTUITIONISTIC logic

in 1975 Diaconescu proved that

in the internal logic of a topos AC \Rightarrow Excluded Middle

in 1978 Goodman- Myhill proved that

in Constructive Set Theory AC

Excluded Middle

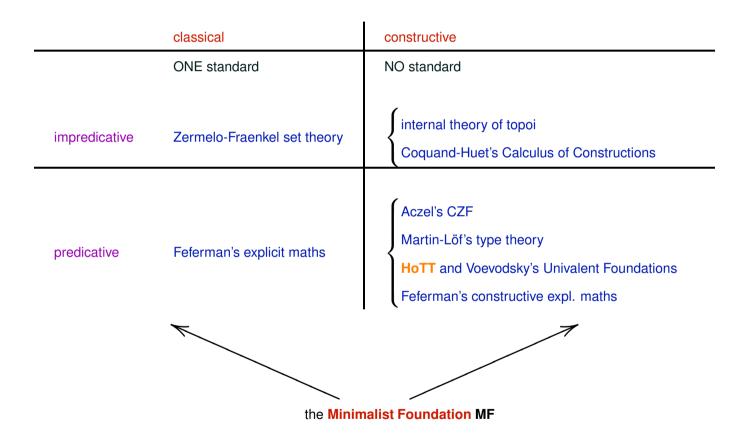
What foundation for constructive mathematics ??

j.w.w. Giovanni Sambin

We wanted to take advantage of the plurality

of foundations for Bishop's constructive mathematics

Plurality of foundations ⇒ need of a minimalist foundation



our foundational approach

as a revised Hilbert program:

we need of a **trustable** foundation for **mathematics compatible** with **most relevant foundations**

I

predicative à la Weyl

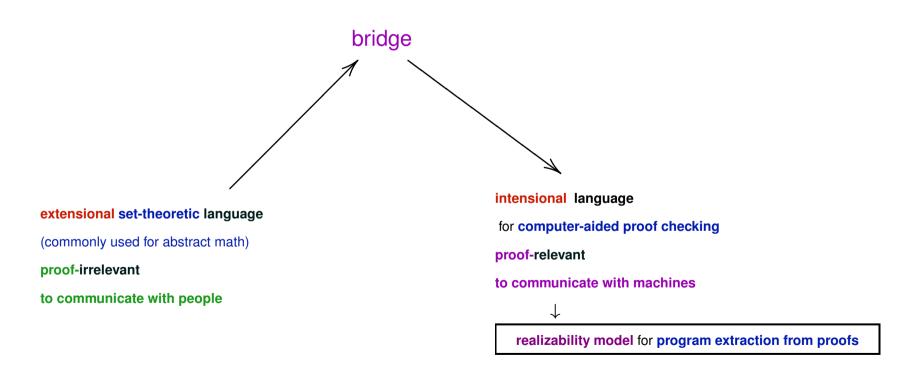
constructive à la Bishop

open-ended to further extensions according to Martin-Löf

for computed-aided formalization of its proofs as advocated by V. Voevodsky

Need of a two level Foundation for constructive mathematics

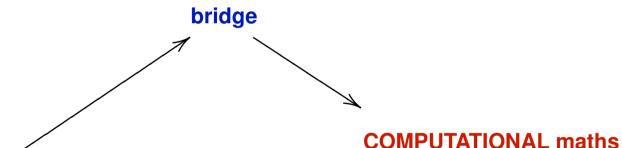
a Constructive Foundation should



Essence of Constructive mathematics and choice

Constructive Mathematics = maths which *admits* **a COMPUTATIONAL interpretation**

Constructive Mathematics is a



abstract maths
no need of choice function

yes, need of choice function for extraction of programs from proofs

Our Proposal (j.w.w. G. Sambin) of constructive foundation

better to found mathematics in a TWO-LEVEL FOUNDATION

extensional level (used by mathematicians to developed their proofs)

interpreted restoring intensional information

(via a quotient completion)

intensional level (language of TYPE THEORY)

 \Downarrow

Our TWO-LEVEL Minimalist Foundation

from [Maietti'09] in agreement with [M. Sambin2005]

its intensional level mTT

(Minimalist Type Theory)

= a PREDICATIVE VERSION of Coquand-Huet's Calculus of Constructions CC

(fragment of Rocq)

- = first order Martin-Löf's intensional type theory + primitive propositions
 - one UNIVERSE of small propositions

its extensional level emTT

(extensional Minimalist Type Theory)

is a PREDICATIVE LOCAL set theory

(NO choice principles)

How to gain CC from the intensional level of MF

Theorem:

Coquand-Huet's Calculus of Constructions CC

(with list types, finite disjoint sums)

which is impredicative

is equivalent to \updownarrow

the intensional level mTT of MF

+ the following resizing rules

 ϕ proposition

 $A \operatorname{\mathsf{col}}$

 ϕ small proposition

 $A \operatorname{set}$

Russell's notion of predicative definitions

"Whatever involves an apparent variable

must not be among the possible values of that variable."

What is the impredicative analogoue of the extensional level of MF

Theorem:

The internal generic theory of quasi-toposes

which is impredicative

is equivalent to \updownarrow

the extensional level emTT of MF

+ the following resizing rules

 ϕ proposition

 $A \operatorname{col}$

 ϕ small proposition

A set

reading AC in the two-level Minimalist Foundation

EXTENSIONAL level of **MF**: **AC**= Zermelo axiom of choice

↓ gets interpreted into

INTENSIONAL level of MF: Martin-Löf's extensional axiom of choice

NOT constructively acceptable

 \Rightarrow classical logic

Extensional Axiom of Choice

$$(AC_{ext}) \quad \forall x \in A \ \exists y \in B \ R(x,y) \longrightarrow$$

$$\exists f \in A \to B \ (\mathbf{Ext}(\mathbf{f})^{\sim}_{\simeq \mathbf{A}} \ \& \ \forall x \in A \ R(x,f(x)))$$

from any total relation we can extract a function preserving arbitrary \simeq_A and \simeq_B provided that R(x,y) preserves \simeq_A and \simeq_B

i.e.

$$\mathbf{Ext}(\mathbf{f})^{\simeq_{\mathbf{A}}} \equiv \forall x_1 \in A \ \forall x_2 \in A \ (x \simeq_A y \to f(x_1) \simeq_B f(x_2))$$

NO constructive

 \Rightarrow classical logic

What corresponds to AC of the intensional level?

Extensional level of MF

Axiom of unique choice

Intensional level of MF: Axiom of choice AC

provable in Martin-Loef's type theory

as advocated by Bishop

two notions of function in the Minimalist Foundation

a primitive notion of type-theoretic function

$$f(x) \in B [x \in A]$$

(closed under "exponentiation")

 \neq (syntactically)

notion of functional relation

$$\forall x \in A \exists ! y \in B \ R(x, y)$$

(NOT closed under "exponentiation")

Axiom of unique choice

 $\forall x \in A \exists ! y \in B \ R(x, y) \longrightarrow \exists f \in A \to B \ \forall x \in A \ R(x, f(x))$

turns a functional relation into a type-theoretic function.

⇒ identifies the two distinct notions...

A peculiarity of the intensional level of MF and MLTT: consistency with ${f CT} + {f AC}$

consistency of the intensional level of MF + Church Thesis CT + Axiom of Choice AC

by "an extension of Kleene realizability"

with Feferman's theory of non-iterative fixtpoints

in H. Ishihara, M.E.M., S. Maschio, T. Streicher, AML, 2018

extended to a constructive consistency of

intensional level of MF +inductive/co-inductive definitions + \mathbf{CT} + \mathbf{AC}

in CZF+REA shown in

M.E.M., S. Maschio and M. Rathjen, LMCS, 2021

M.E.M., S. Maschio and M. Rathjen, LMCS 2022

M.E.M., P. Sabelli, MFPS'23 + P. Sabelli, PhD thesis, 2024

A peculiarity of MLTT

also intensional Martin-Löf's type theory MLTT is consistent

with Church Thesis $\operatorname{CT} + \operatorname{Axiom}$ of Choice AC

but Homotopy Type Theory is NOT

since

 $HoTT + CT + propositional AC \vdash \perp$

Church Thesis CT + Axiom of Choice AC contradicts extensionality

Heyting arithmetics with finite types + AC+CT+ extfun $\vdash \bot$ where

$$\frac{f(x) =_B g(x) \ true \ [x \in A]}{\lambda x. f(x) =_{A \to B} \lambda x. g(x) \ true} \qquad \text{extensionality}$$

extensional level of MF+ Church Thesis +AC $_{nat,nat}$

↓ (interpreted)

predicative Hyland's Effective Topos

in [Maietti-Maschio'21] "A predicative variant of Hyland's Effective Topos" JSL 2021

built out of a categorical structure

(= the elementary quotient completion from [M.-Rosolini13])

using the realizability semantics for the intensional level of MF

Open issue

What model for

Coquand-Huet's Calculus of Constructions + CT + AC? or even

Is the consistency + CT + AC

discriminating predicative from impredicative theories?

Brouwer's intuitionism contradicts Church thesis

Brouwer's continuity principles + Church thesis ⊢⊥

(⇒ incompatible with Russian constructivism including CT)

because

 $each\ level\ {f of\ MF}\ +\ {f Fan\ theorem}\ +{f CT}\ {f is\ inconsistent}$

where

Fan theorem = spatiality of Cantor space

choice sequences=functional relations

two notions of function in the Minimalist Foundation

a primitive notion of type-theoretic function

$$f(x) \in B [x \in A]$$

(closed under "exponentiation")

 \neq (syntactically)

notion of functional relation

$$\forall x \in A \exists ! y \in B \ R(x, y)$$

(NOT closed under "exponentiation")

Type-theoretic Church thesis


```
(\mathbf{TCT}) \begin{tabular}{ll} $\forall f \in \mathsf{N}at \to \mathsf{N}at$ & $\exists e \in \mathsf{N}at$ \\ & (\forall x \in \mathsf{N}at \ \exists y \in \mathsf{N}at \ T(e,x,y) \ \& \ U(y) =_{\mathsf{N}at} f(x))$ \\ & \text{type-theoretic functions} \ (\subset_{\neq} \text{functional relations})$ \\ & \text{are all computable} \end{tabular}
```

Peculiariy of MF: reconciling Russian constructivism with Brouwer intuitionism

Theorem:

Both levels of MF are consistent with +Theoretical Church Thesis (\mathbf{TCT})

+ Brouwer's continuity principles

Bar Induction (BI) = spatiality of Baire locale

Local Continuity Principle (LCP)= continuity of functions from Baire space to Nat

where

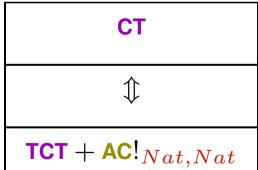
Brouwer's choice sequences= functional relations

Proof: a model made of Hyland's assemblies formalized in

Aczel's CZF+REA + BI+LCP

(= a predicative and constructive quasi-topos of assemblies!!!)

Decomposition of Church Thesis



Axiom of unique choice

 $\forall x \in A \exists ! y \in B \ R(x, y) \longrightarrow \exists f \in A \to B \ \forall x \in A \ R(x, f(x))$

turns a functional relation into a type-theoretic function.

⇒ identifies the two distinct notions...

valid in Homotopy Type Theory, Martin-Löf's type theory and Aczel's CZF

but NOT in the Minimalist Foundation

Foundations NOT reconciling Russian constructivism with Brouwer's intuitionism

Homotopy type theory and Martin-Löf's type theory

do NOT satisfy such a consistency property

because

$$HoTT + BI + LCP + TCT \vdash \bot$$

Martin-Löf's type theory
$$+\mathbf{BI}+\mathbf{LCP}+\mathsf{TCT}\vdash \perp$$

due to Kleene's proof that

since they validate AC!

Peculiariy of CC: reconciling Russian constructivism with Brouwer intuitionism

Theorem:

CC is consistent with +Theoretical Church Thesis (\mathbf{TCT})

+ Brouwer's continuity principles:

Bar Induction (BI) = spatiality of Baire locale

Local Continuity Principle (LCP)= continuity of functions from Baire space to Nat

where

Brouwer's choice sequences= functional relations

Proof. a model made of Hyland's assemblies formalized in

(= an intuitionistic quasi-topos of assemblies!!!)

the two levels of MF are equiconsistent

from j.w.w. Pietro Sabelli in Apal 2024

emTT + propositional univalence
$$\updownarrow$$
 \Downarrow in [M09] \Uparrow as in [M09] $(Prop_s)^{int}$ as $\mathcal{P}(1)$

propositional univalence

$$\frac{\phi \ \mathsf{prop} \qquad \psi \ \mathsf{prop} \qquad \phi \leftrightarrow \psi \ \mathsf{true}}{\phi = \psi \ prop}$$

CC is equiconsistent to the internal language of quasi-toposes

from j.w.w. Pietro Sabelli in Apal 2024

int. lang. of quasi-toposes+ propositional univalence

↓ as in [M09]

↑ as in [M09]

but $(\mathsf{Prop}_{\mathsf{S}})^{int}$ as $\mathcal{P}(1)$

CC

propositional univalence

 ϕ prop

 ${\color{red} \psi}$ prop $\phi \leftrightarrow \psi$ true

$$\phi = \psi \ prop$$

Open issues

Computer-formalization of the two-level MF

Consistency of Coquand-Huet's Calculus of Constructions + CT + AC

(Is this a property discriminating predicative from impredicative theories?)

• Consistency of the intensional level of MF + AC + Brouwer's continuity principles (with NO ξ -rule)