Universes in synthetic $(\infty, 1)$ -category theory

Daniel Gratzer^a **Jonathan Weinberger**^{b1} Ulrik Buchholtz^c Nikolai Kudasov^d Emily Riehl^e

^aAarhus University, Denmark, ^bChapman University, USA, ^cUniversity of Nottingham, United Kingdom, ^dInnopolis University, Russia, ^eJohns Hopkins University, USA

Synthetic mathematics, logic-affine computation and efficient proof systems, CIRM. Luminy. September 9, 2025

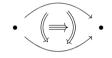
¹Kindly supported by the Fletcher Jones Foundation.

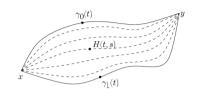
Dedicated to the dear memory of Thomas Streicher (1958–2025)

∞ -category theory

∞ -categories:

higher morphisms and weak composition





Created with xfig by Yonatan,

https://commons.wikimedia.org/wiki/File:

Homotopy_curves.png

- Applications: Derived algebraic geometry, stable homotopy theory, topological quantum field theories, higher rewriting, . . .
- Dream: $(\infty, 1)$ -category theory should be like 1-category theory, but up-to-homotopy.
- Problems in analytic, set-theoretic foundations: heavy encoding and not homotopy-invariant. Can we do better?
- Yes, in synthetic foundations, and using the power of lattice theory and modal logic!

Functoriality and naturality for free! Reduction to finite-dimensional arguments
Proofs less model-dependent Verification via computer
"\infty\text{-category theory for undergraduates"(!?) [Rie23]}

Simplicial homotopy type theory

- Question: How to extend HoTT to capture ∞-categories?
- **Answer:** (after Riehl–Shulman): HoTT + interval $\mathbb{I} := \Delta^1$
- Recall Emily's lecture:

A type theory for synthetic ∞-categories

Emily Rich? and Michael Shulman*

They of Melonamo, Adm Rights 12, 1809 N. Charles № 1, thillings, 300 2729.

Higher Structures 1(1):116-193, 2017.

Synthetic $(\infty, 1)$ -category theory

Definition (Synthetic ∞-categories [RS17])

A type A is ...

ullet Segal or a pre- ∞ -category if $A^{\Delta^2} \simeq A^{\Lambda_1^2}$:

$$\{\blacktriangle\}\simeq\{\land\}$$

• Rezk or a ∞ -category if it is Segal and $A \simeq A^{\mathbb{E}}$:

$$\{\bullet\}\simeq\{\bullet\cong\bullet\}$$

• an ∞ -groupoid if $A^{\parallel} \simeq A$:

$$\{ullet\}\simeq\{ullet oullet\}$$

Definition (hom type)

The **hom type** for a,b:A is: $\hom_A(a,b):=\sum_{f:\mathbb{D}\to A}f(0)=a\times f(1)=b$

Models and other synthetic approaches

- Just as HoTT is the internal language of ∞ -toposes \mathcal{E} (Awodey's conjecture solved by [Shu19]), sHoTT is the internal language of simplicial objects $\mathcal{E}^{\Delta^{op}}$; cf. El Mehdi's talk.
- ullet Models will be (internal) complete Segal spaces, cf. Martini and Wolf's internal ∞ -topos theory [MW23].
- Rasekh [Ras25] constructs nonstandard models (as filter quotients).
- There are also close parallels to Riehl–Verity's ∞ -cosmos theory [RV22] and Cisinski–Cnossen–Nguyen–Walde's synthetic $(\infty, 1)$ -category theory [Cno25].
- Some of our structure appears also in d'Espalungue's internal approach to hierarchies of higher structures [dAr23], cf. Sophie's talk.

Previous work in sHoTT

- Basic CT, fibered Yoneda lemma, adjunctions [RS17]
- Limits and colimits [Bar22]
- Cartesian fibrations and generalizations [BW23; Wei24a; Wei24b] (cf. also [RV22])
- Conduché fibrations [Bar24]
- Today: work in an extended modal framework, giving rise to:
- directed univalent universe S for ∞-groupoids and left fibrations [GWB24] (using modal operators), cf. [Rie18; WL20; Wea24]
- functorial Yoneda lemma for presheaves valued in \mathcal{S} [GWB25]
- cocompleteness, spectra, and generalized cohomology, in preparation
- ullet the synthetic ∞ -category Cat of ∞ -categories, in preparation

Formalizing ∞-categories in Rzk

- Kudasov has developed the Rzk proof assistant, implementing sHoTT: https://rzk-lang.github.io/
- Using Rzk we initiated the first ever formalizations of ∞ -category theory.
- In spring 2023, with Kudasov and Riehl we formalized the (discrete fibered) Yoneda lemma of ∞-category theory: https://emilyriehl.github.io/yoneda/
- alongside many other results
- Many proofs in this ∞ -dimensional setting *easier* than in dimension 1!
- Formalization helped find a mistake in original paper
- More students & researchers joined us developing a library for ∞-category theory: https://rzk-lang.github.io/sHoTT/ Join us!


```
··· M 09-voneda rzk md •
                                            ## The Yoroda lenma
                                            The Yoreda lemma says that evaluation at the identity defines an equivalence
W 08-propositions rais mal
                                            This is proven combining the previous steps,
XI 10-trivial-fibrations rak-rud
                                            ""rek titles"P$17. Theorem 9.1"

▼ 03-simplicial-type-theory.rzk.md

                                            #def yonedo-lemna uses (funext)
                                            ( is-sepal-A : is-sepal A)
                                      281 (a:A)
7 06-2cat-of-segal-types.rzk.md
                                     282 6 C 1 A = 10
                                             ( is-covariant-C | is-covariant & C)
 37 08-coverient rzk.md
                                            I is equiv ((2 ) A) a hom A a 2 a C 2) (C a) (evid A a C)
7 09-yoneda.rzk.md
                                             [ ( ( yon A is-seqs)-A a C is-covariant-C)
37 10-rezk-types.rzk.md
                                                  ( unnegged & (separated a C (secondrigate())
37 12-cocartesian.rzk.md
                                                  / ( use A is-sees)-A a C is-covariant-Cl
                                                   ( evid-yon A is-segal-A a C is-covariant-C))]
```


Fibered Yoneda Lemma

Theorem (Yoneda Lemma for covariant families (Riehl-Shulman))

Let A be a Segal type, and a: A any term. For a covariant type family $C: A \to \mathcal{U}$, evaluation at id_a is an equivalence:

$$\operatorname{evid}_a^C: \left(\prod_{x:A} \operatorname{hom}_A(a,x) \to C(x)\right) \xrightarrow{\simeq} C(a)$$

The inverse map is given by

$$\mathbf{y}_a^C : C(a) \to \Big(\prod_{x:A} \hom_A(a,x) \to C(x)\Big), \quad \mathbf{y}_a^C(u)(x)(f) :\equiv f_! u$$

- Proof "simply" follows from naturality properties and covariance of $hom_A(a, -)$.
- There also exists a dependent version giving directed path induction.
- Both have been formalized in Kudasov's new proof assistant Rzk in [Kud23].
- More general but easier than (analytic) 1-categorical proof!

Simplicial vs cubical models

Simplex category
$$\Delta = \{[n] \mid n \geq 0\},$$
 Cube category $\square = \{[1]^n \mid n \geq 0\}$

Theorem ([KV20; Sat19; SW21])

Simplicial spaces $[\Delta^{\mathrm{op}}, \mathcal{S}]$ are an essential sub- ∞ -topos of cubical spaces $[\Box^{\mathrm{op}}, \mathcal{S}]$

Internally, a cubical type A is **simplicial** if

Ril24]).

$$isSimp(A) :\equiv \prod_{i,j:\mathbb{I}} isEquiv(A^! : A \to A^{i \leq j \vee j \leq i}).$$

This defines a lex **modality** à la [RSS20]; see also [Wil25]. We need the outer cubical layer to define the correct (categorical) universes (using [Lic+18;

Multimodal type theory

Organize categorical operations via **multimodal type theory (MTT)** [Gra+20; Gra23b; Shu23]. MTT is parametrized by a **mode theory** \mathcal{M} , i.e. a 2-category with:

- objects m (modes)
- morphisms $\mu : m \to n$ (modalities)
- 2-cells $\mu: m \to n$ (natural maps of modalities)

A model is given by a 2-functor $F:\mathcal{M}\to\mathsf{Cat}$, with each F_μ lcc, and such that there are left adjoints $L_\mu\dashv F_\mu$.

Theorem (Normalization for MTT [Gra23a])

If ${\mathcal M}$ is decidable, then MTT has normalization and decidable type-checking.

Actions on contexts and types: Interpret Γ/μ via L_{μ} and $\langle \mu \mid A \rangle$ via F_{μ} . Formation and introduction:

$$\frac{\Gamma/\mu \vdash A@m}{\Gamma \vdash \langle \mu \mid A \rangle@n \qquad \Gamma, x :_{\mu} A \ \operatorname{ctx}@n} \ \mu\text{-}\mathsf{F} \qquad \frac{\Gamma/\mu \vdash M : A@m}{\Gamma \vdash \operatorname{mod}_{\mu}(M) : \langle \mu \mid A \rangle@n} \ \mu\text{-}\mathsf{I}$$

MTT: Variable and elimination rules

The **variable** rule comes from the counit:

$$\frac{\mu:m\to n}{\Gamma,x:_{\mu}A/\mu\vdash x:A@m}\ \mu\text{-var}$$

For arbitrary 2-cells we get more generally:

$$\frac{\mu,\nu:m\to n}{\Gamma,x:_{\mu}A/\mu\vdash x^{\alpha}:A^{\alpha}@m} \text{ α-var}$$

Weakening:

$$\frac{\mu:m\to n\qquad \alpha:\mu\Rightarrow \operatorname{mods}(\Gamma')}{\Gamma,x:_{\mu}A,\Gamma'\vdash x^{\alpha}:A^{\alpha}@m} \text{ α-wk}$$

Elimination is given by pattern matching:

$$\begin{split} \mu: m \to n \quad \nu: n \to o \\ \Gamma, x:_{\nu} \langle \mu \mid A \rangle \vdash B@o \\ \Gamma / \nu \vdash M_0: \langle \mu \mid A \rangle@n \\ \Gamma, y:_{\nu\mu} A \vdash M_1: B[\mathsf{mod}_{\mu}(y)/x]@o \\ \hline{\Gamma \vdash \mathsf{let}_{\nu} \; \mathsf{mod}_{\mu}(x) \leftarrow M_0 \; \mathsf{in} \; M_1: B[M_0/x]@o} \end{split}$$

From these we can derive **coercion**

$$coe_{\alpha} : \langle \mu \mid A \rangle \to \langle \nu \mid A \rangle$$

and composition:

$$\mathsf{comp} : \langle \mu \nu \mid A \rangle \to \langle \mu \mid \langle \nu \mid A \rangle \rangle$$

Triangulated type theory

Triangulated type theory TT_{\square} is $\mathsf{sHoTT} + \mathsf{MTT}$ with single mode m and the following mode morphisms:

- Opposite op: $\langle op \mid A \rangle$ has its *n*-simplices reversed
- **Discretization/core** \flat : $\langle \flat \mid A \rangle \to A$ is the maximal subgroupoid of A
- Codiscretization $\sharp: A \to \langle \sharp \mid A \rangle$ is localization at $\partial \Delta^n \to \Delta^n$ (for crisp closed types)
- Twisted arrows tw: $\langle \text{tw} \mid A \rangle$ has as n-simplices:

$$a_n \longleftarrow \ldots \longleftarrow a_2 \longleftarrow a_1 \longleftarrow a_0$$

$$\downarrow$$

$$a_{n+1} \longrightarrow \ldots \longrightarrow a_{2n-2} \longrightarrow a_{2n-1} \longrightarrow a_{2n}$$

Mode theory:

$$b \circ b = b \circ op = b \circ \sharp = tw \circ b = op \circ b = b \qquad \sharp \circ \sharp = \sharp \circ b = \sharp \circ op = op \circ \sharp = \sharp$$

$$op \circ op = id \qquad \varepsilon : b \to id \qquad \eta : id \to \sharp$$

$$\eta \cdot \sharp = \sharp \cdot \eta = id : \sharp \to \sharp \qquad b \cdot \eta = id : b \to b$$

plus some coherence conditions for tw

Some axioms for triangulated type theory I

Axiom (Interval 1)

There is a bounded distributive lattice (\mathbb{I} : Set, $0, 1, \vee, \wedge$)

Axiom (Reversal on I)

There is an equivalence $\neg : \langle op \mid \mathbb{I} \rangle \to \mathbb{I}$ which swaps 0 for 1 and \wedge for \vee .

Axiom (I detects discreteness)

If $A:_{\flat}\mathcal{U}$ then $\langle \flat \mid A \rangle \to A$ is an equivalence if and only if $A \to (\mathbb{I} \to A)$ is an equivalence.

Axiom (Global points of 1)

The map $\mathbb{B} \to \mathbb{I}$ is injective and induces an equivalence $\mathbb{B} \simeq \langle \flat \mid I \rangle$.

Some axioms for triangulated type theory II

Axiom (Cubes separate)

 $f:_{\flat}A\to B$ is an equivalence if and only if the following holds:

$$\Pi_{n: \flat \mathbb{N}} \text{ isEquiv } (f_* : \langle \flat \mid \mathbb{I}^n \to A \rangle \to \langle \flat \mid \mathbb{I}^n \to B \rangle)$$

Compare/recall from Felix's and Ulrik's talks:

Axiom (Synthetic quasi-coherence (SQC) [Ble23])

Let $\mathbb{I} \to A$ be a finitely presented \mathbb{I} -algebra, i.e., $A \simeq \mathbb{I}[x_1, \dots, x_n]/(r_1 = s_1, \dots, r_n = s_n)$, then the evaluation map is an equivalence:

$$\operatorname{ev} \equiv \lambda a, f.f(a) : A \simeq (\operatorname{hom}_{\mathbb{I}}(A, \mathbb{I}) \to \mathbb{I})$$

Versions of the latter axiom appear in synthetic differential geometry (Kock–Lawvere axioms) [Koc77], synthetic algebraic geometry [CCH24], and synthetic domain theory [SY25]. For more context and a new categorical discussion see [Mye25].

Applications of SQC I

Lemma (Phoa's principle [Pho90] and [PS25])

$$(\mathbb{I} \to \mathbb{I}) \simeq \Delta^2 \to \mathbb{I} \times \mathbb{I}$$

A version of this also appears in ongoing work on synthetic Stone duality [CGM25], see also Hugo's upcoming talk and [Che+24]:

Lemma (Generalized Phoa's principle)

- \bullet $(\Delta^n \to \mathbb{I}) \simeq \mathbf{Pos}([0 \le \ldots \le n], \mathbb{I})$

Theorem

- I is simplicial.
- \bullet Δ^n is a category.

Applications of SQC II

Theorem

If $A:_b \mathcal{U}$ is discrete then A is simplicial.

After Gratzer, using $\flat \dashv \sharp$ one can prove that $\mathbb N$ is discrete.

Corollary

 \mathbb{B} and \mathbb{N} are both discrete and simplicial, i.e., groupoids.

Warning: The theorem is *false* for general Rezk types, e.g. consider $\Delta^2 \coprod_{\Delta^1} \Delta^2$.

Towards the ∞ -category of ∞ -groupoids

- Covariant families are ∞ -groupoids fibered over ∞ -categories.
- ullet They admit **transport**: $(-)_!:\prod_{a,b:X}(a o_X b) o A(a) o A(b)$
- If X is Segal, then each fiber A(a) is discrete.
- Can we take $\sum_{A:\mathcal{U}} isCov(A)$?
- No: isCov(A) just means that A is discrete; doesn't see variance.
- Need a predicate that yields covariance over all possible contexts.
- Solution: Amazing fibrations due to M. Riley (2024): A Type Theory with a Tiny Object, arXiv:2403.01939; based on Licata-Orton-Pitts-Spitters '18 (which was used for similar purposes by Weaver-Licata '20)

Amazingly covariant families

- Consider $\operatorname{isCov}(A:\mathbb{I}\to\mathcal{U})\simeq\prod_{x:A(0)}\operatorname{isContr}\big(\sum_{y:A(1)}(x\to_{\alpha}y)\big),$ where $\alpha:\operatorname{hom}_{\mathbb{I}}(0,1).$
- This gives a predicate $isCov_{\mathbb{I}}: \mathcal{U}^{\mathbb{I}} \to Prop.$

Definition (Amazingly covariant types)

Let $A: \mathcal{U}$ be a type. It is *amazingly covariant* if and only if the following proposition is inhabited:

$$\mathrm{isaCov}(A) :\equiv \left(\mathrm{isCov}_{\mathbb{I}}(\lambda i.A^{\eta}(i))\right)_{\mathbb{I}},$$

where A^{η} is the image of A under the unit $\eta_{\mathcal{U}}: \mathcal{U} \to (\mathcal{U}^{\mathbb{I}})_{\mathbb{I}}$.

The ∞ -category of ∞ -groupoids

Define the universe of simplicial types and ∞ -groupoids, resp.:

$$\mathcal{U}_{\boxtimes} :\equiv \sum_{A:\mathcal{U}} \mathrm{isSimp}(A) \qquad \mathcal{S} :\equiv \sum_{A:\mathcal{U}_{\boxtimes}} \mathrm{isaCov}(A)$$

Theorem (The ∞ -category of ∞ -groupoids [GWB24])

 \bigcirc S classifies amazingly covariant families in \mathcal{U}_{\boxtimes} :

$$E \simeq B \times_{\mathcal{S}} \mathcal{S}_* \longrightarrow \mathcal{S}_*$$

$$\downarrow^{\pi}$$

$$B \xrightarrow{\chi_{\xi}} \mathcal{S}$$

- ② S is closed under Σ , identity types, and finite (co)limits.
- ③ S is directed univalent:

$$\operatorname{arrtofun} : (\Delta^1 \to \mathcal{S}) \simeq \left(\sum_{A,B:\mathcal{S}} (A \to B) \right)$$

④ S is Segal and Rezk, i.e., an ∞-category.

Directed univalence

① Since S classifies (amazingly) covariant families, there is a map

$$\operatorname{arrtofun} :\equiv \lambda F.(F\,0,F\,1,\alpha_!^F:F\,0\to F\,1):(\Delta^1\to\mathcal{S})\to \Big(\sum_{A\,B:S}(A\to B)\Big).$$

In the other direction, we consider the mapping cone/directed glue type (cf. cubical type theory and Weaver–Licata '20):

Gl :=
$$A, B, f.\lambda i. \sum_{b:B} (i = 0) \to f^{-1}(b) : \left(\sum_{A,B:S} (A \to B)\right) \to (\Delta^1 \to S)$$

Then argue that these are inverses up to homotopy.

Application: directed structure identity principle (DSIP)

Theorem (DSIP for pointed spaces)

Let
$$S_* :\equiv \sum_{A \in S} A$$
. Then for $(A, a), (B, b) : S_*$ we have:

$$\hom_{\mathcal{S}_*}((A, a), (B, b)) \simeq \sum_{f: A \to B} f(a) = b$$

Theorem (DSIP for monoids)

Consider the type (category!) of (set-)monoids

$$\operatorname{Monoid} :\equiv \sum_{A:\mathcal{S}_{\leq 0}} \sum_{\varepsilon:A} \sum_{\cdot: A \times A} \operatorname{isAssoc}(\cdot) \times \operatorname{isUnit}(\cdot, \varepsilon).$$

Then homomorphisms from $(A, \varepsilon_A, \cdot_A, \alpha_A, \mu_A)$ to $(B, \varepsilon_B, \cdot_B, \alpha_B, \mu_B)$ correspond to set maps $A \to B$ compatible with multiplication and units.

Towards synthetic higher algebra

We can internally define presheaf categories $PSh(C) :\equiv \langle op | C \rangle \rightarrow S$.

Definition (∞ -monoids)

The category Mon_{∞} of ∞ -monoids is the full subcategory of $\mathrm{PSh}(\Delta)$ defined by the predicate

$$\varphi(X :_{\flat} \mathrm{PSh}(\Delta)) :\equiv \prod_{n:\mathrm{Nat}} \mathrm{isEquiv}(\langle X(\iota_k)_{k < n} \rangle : X(\Delta^n) \to X(\Delta^1)^n)$$

This encodes the structure of a homotopy-coherent monoid. Multiplication is given through

$$\mu_X: X(\Delta^1) \simeq X(\Delta^1)^2 \to X(\Delta^1).$$

Definition (∞ -groups)

The category Grp_{∞} of ∞ -groups is the full subcategory of Mon_{∞} defined by the predicate

$$\varphi(X:_{\flat} \mathrm{Mon}_{\infty}) :\equiv \mathrm{isEquiv}(\lambda x, y.\langle x, \mu_X(x,y)\rangle : X(\Delta^1)^2 \to X(\Delta^1)^2)$$

Again using DSIP, these categories have the right types of morphisms.

^aneed the codiscrete modality #

Functorial Yoneda lemma and presheaf theory

Let $\Phi_C: \langle \operatorname{op} \mid C \rangle \times C \to \mathcal{S}$ be the unstraightening of the **twisted arrow fibration**. Then define the **Yoneda embedding** $\mathbf{y}_C := \lambda c. \Phi_C(-,c): C \to \widehat{C} := \mathcal{S}^{\langle \operatorname{op} \mid C \rangle}.$

Theorem (Functorial Yoneda lemma)

There is a natural isomorphism $\Phi_C(\mathbf{y}(-),-)\cong \mathrm{eval}: \langle \mathrm{op}\mid C \rangle \times \widehat{C} \to \mathcal{S}.$

Theorem (Density)

If
$$X:_{lat}\widehat{C}$$
 , then $X\simeq \varinjlim_{\langle\operatorname{op}\mid \widetilde{X}\rangle} \mathbf{y}\circ \pi^{\operatorname{op}}.$

Theorem (Descent)

Let
$$A$$
 be a category and $F:_{\flat}C\to \widehat{A}$, then $\widehat{A}/\varinjlim_{c:C}F(c)\simeq \varprojlim_{c:C}\widehat{A}/F(c)$.

Theorem (Cocompletion)

$$\widehat{C}$$
 is the free cocompletion of $C\colon \mathbf{y}^*:(\widehat{C}\to_{\mathrm{cc}}E)\simeq (C\to E)$

Kan extensions, cofinal functors, and Quillen's Theorem A

Definition (Kan extensions)

Given $f:_{\flat} C \to D$ and a category E, the **left Kan extension** lan_f is the left adjoint to $f^*: E^D \to E^C$.

Theorem (Colimit formula)

Let E be cocomplete and $X :_{\flat} C \to E$, then $\operatorname{lan}_f X d \simeq \varinjlim (C \times_D D/d \to C \to E)$.

Definition (Cofinal functors)

A functor $f:_{\flat}C\to D$ is **right cofinal** if for every $X:_{\flat}D\to \mathcal{S}$ we have $\varinjlim_{D}X\simeq \varinjlim_{C}X\circ f.$

Proposition (Characterization of right cofinality)

A functor is right cofinal iff it is left orthogonal to all right fibrations.

Theorem (Quillen's Theorem A [GWB25])

A functor $f:_b C \to D$ is right cofinal if and only if $L_1(C \times_D d/D) \simeq 1$ for each $d:_b D$.

Sifted colimits

Definition

A crisp ∞ -category C is **sifted** if $\varinjlim_{C}: \mathcal{S}^C \to \mathcal{S}$ preserves finite products.

With Quillen's Theorem A we get:

Proposition

A crisp ∞ -category C is sifted if and only if for all $n : \mathbb{N}$ the map $C^! : C \to C^n$ is right cofinal.

Theorem

If C has finite coproducts and sifted colimits then it is cocomplete.

Filtered colimits

Definition

An ∞ -category is **finite** if it is generated by 0, 1, or 1 under pushouts.

Definition

A crisp ∞ -category C is **filtered** if $\varinjlim : \mathcal{S}^C \to \mathcal{S}$ preserves finite limits.

Definition

A crisp ∞ -category C is **weakly filtered** if $C^!: \mathcal{C}^X \to \mathcal{C}$ is right cofinal for all finite ∞ -categories X.

We can adapt [SW25] to prove:

Theorem

If C has finite and filtered colimits then it is cocomplete.

Spectra

Stable homotopy theory studies the limit behavior of spaces upon repeatedly suspending them. Spaces get replaced by spectra which correspond to symmetric monoidal ∞ -groupoids and are central to higher algebra:

Definition (The ∞-category of spectra)

The ∞ -category of **spectra** is defined as the (HoTT) limit: $Sp :\equiv \underline{\lim}(\mathcal{S}_* \overset{\Omega}{\leftarrow} \mathcal{S}_* \overset{\Omega}{\leftarrow} \ldots)$.

Proposition

Sp is closed under finite limits and filtered colimits.

Following [Cno25], using the cofinality of \mathbb{N} we can prove:

Proposition

 $\Omega: \mathbf{Sp} \to \mathbf{Sp}$ is an equivalence.

Proposition

Sp is finitely cocomplete, and pushouts coincide with pullbacks.

Corollary

Sp is cocomplete.

Ordinary homology theories and smash product

For a commutative ring R, consider the **Eilenberg–Mac Lane spectrum functor** $1 \mapsto HR : \mathcal{S} \to Sp$.

Theorem

The family of functors $H_i: \mathcal{S} \to \mathbf{Ab}$ defined by $H_iX :\equiv \pi_i \operatorname{H}(X;R)$ satisfies the Eilenberg–Steenrod axioms.

Via directed univalence we can define the smash product $-\wedge -: \mathcal{S}_* \times \mathcal{S}_* \to \mathcal{S}_*$, immediately recovering the results proven in Book HoTT such as associativity [Lju24]. Using directed univalence again, we can lift the following to a functor on spectra:

Definition

The **smash product** of spectra $X, Y : \mathbf{Sp}$ is given by

$$X \otimes Y :\equiv \varinjlim_{i,j:\mathbb{N}} \Omega^{i+j} \Sigma^{\infty} (X_i \wedge Y_j).$$

The ∞ -category of ∞ -categories

- Recently, we constructed the long desired ∞ -category of ∞ -categories Cat synthetically.
- Just as S is the classifier for (amazingly) covariant fibrations, Cat should be the classifier for (amazingly) **cocartesian fibrations**, see [BW23].
- A direct attempt to define Cat in this way seems intractible. However, an approach via locally cocartesian arrows works. Over I this amounts to:

$$\begin{split} \text{isLCC} : \prod_{A:\mathcal{U}^{\emptyset}} \prod_{a:(i:\mathbb{I}) \to A(i)} & \text{Prop} \\ \\ \text{isLCC}(A,a) :\equiv \prod_{b:(i:\mathbb{I}) \to A(i)} \prod_{p:a0=b0} & \text{isContr} \left(\sum_{t:(i,j:\Delta^2) \to A(i)} t |_{\Lambda_0^2} = [a,b,p] \right) \end{split}$$

• We then define Cat by:

$$\mathsf{Cat} :\equiv \sum_{A:\mathcal{U}_{\boxtimes}} \mathsf{isRezk}(A) \times \mathsf{aIsInner}(A) \times \mathsf{aHasLCCLifts}(A) \times \mathsf{aLCCLiftsCompose}(A)$$

Classifying property and directed univalence

Theorem (Gratzer-W-Buchholtz '25)

① Cat classifies (amazingly) cocartesian families in \mathcal{U}_{\square} :

$$E \simeq B \times_{\operatorname{Cat}} \operatorname{Cat}_* \longrightarrow \operatorname{Cat}_*$$

$$\xi \downarrow \qquad \qquad \downarrow^{\pi}$$

$$B \xrightarrow{\chi_{\xi}} \operatorname{Cat}$$

② Cat is directed univalent:

arrtofun :
$$(\Delta^1 \to \operatorname{Cat}) \simeq \left(\sum_{A,B:\operatorname{Cat}} (A \to B) \right)$$

3 Cat is a category.

Cocartesian directed gluing

Definition

Let $F_0, F_1 :_{\flat} X \to \mathcal{U}_{\boxtimes}$ be cocartesian fibrations, and $\alpha :_{\flat} \prod_{x:X} F_0(x) \to F_1(x)$ be a cocartesian functor. The **directed aluing** is given by:

$$Gl(F_0, F_1, \alpha) : \mathbb{I} \times X \to \mathcal{U}_{\square}$$

$$Gl(F_0, F_1, \alpha)(i, x) := \sum_{f: F_1(x)} (i = 0) \to \alpha(x)^{-1}(f)$$

Theorem

If X is a category and F_0, F_1, α are as above, then $\mathrm{Gl}(F_0, F_1, \alpha)$ is cocartesian.

Outlook

- more on Conduché fibrations and the $(\infty, 2)$ -topos perspective, see [AM24]
- ullet synthetic ∞ -monads, ∞ -operads, (symmetric) monoidal ∞ -categories, \dots
- $\bullet \ (\mathbf{Sp}, \otimes, \mathbb{S})$ as an s.m.c. (or the unit in presentable stable $\infty\text{-categories})$
- internal higher topos theory
- metatheory of (higher?) type theories internally in type theory
- computational version and metatheory of modal sHoTT
- Connections to synthetic higher & differential geometry [Sch13; SS12; Shu18; Wel18; CCH24; MR23] and synthetic Stone duality & (light) condensed type theory ([BC24; Che+24; CGM25])
- more formalization
- ...

References I

[AM24] Fernando Abellán and Louis Martini. $(\infty, 2)$ -Topoi and descent. 2024. arXiv: 2410.02014 [math.CT]. url: https://arxiv.org/abs/2410.02014. [Bar22] César Bardomiano Martínez. Limits and colimits of synthetic ∞ -categories. 2022. arXiv: 2202.12386. [Bar24] César Bardomiano Martínez. Exponentiable functors between synthetic ∞ -categories. 2024. arXiv: 2407.18072. [BC24] Reid Barton and Johan Commelin. Directed aspects of condensed type theory. HoTT Electronic Seminar Talks. 2024. url: https: //www.math.uwo.ca/faculty/kapulkin/seminars/hottestfiles/Barton-2024-09-26-HoTTEST.pdf. [Ble23] Ingo Blechschmidt. A general Nullstellensatz for generalized spaces. Draft. 2023. url: https://rawgit.com/iblech/internal-methods/master/paper-qcoh.pdf. [BW23] Ulrik Buchholtz and Jonathan Weinberger. "Synthetic fibered $(\infty, 1)$ -category theory". In: Higher Structures 7 (1 2023), pp. 74–165, doi: 10.21136/HS.2023.04.

References II

[CCH24]	Felix Cherubini, Thierry Coquand, and Matthias Hutzler. "A foundation for synthetic algebraic geometry". In: <i>Mathematical Structures in Computer Science</i> 34.9 (2024), pp. 1008–1053.
[Che+24]	Felix Cherubini et al. <i>A Foundation for Synthetic Stone Duality</i> . 2024. arXiv: 2412.03203 [math.LO]. url: https://arxiv.org/abs/2412.03203.
[Cno25]	Bastiaan Cnossen. Introduction to stable homotopy theory. Online. 2025. url: https://drive.google.com/file/d/livHDIqclbg2hxmUEMTqmj2TnsAHQxVg9/view.
[CGM25]	Thierry Coquand, Freek Geerligs, and Hugo Moeneclaey. <i>Directed Univalence in Synthetic Stone Duality</i> . Draft. 2025. url: https://github.com/felixwellen/synthetic-zariski/tree/main/condensed-univalence.
[dAr23]	Sophie d'Espalungue d'Arros. "Operads in 2-categories and models of structure interchange". PhD thesis. Université de Lille, 2023.
[Gra23a]	Daniel Gratzer. <i>Normalization for multimodal type theory</i> . 2023. arXiv: 2301.11842 [cs.L0].

References III

- [Gra23b] Daniel Gratzer. "Syntax and semantics of modal type theory". PhD thesis. Aarhus University, 2023.
- [GWB24] Daniel Gratzer, Jonathan Weinberger, and Ulrik Buchholtz. *Directed univalence in simplicial homotopy type theory.* 2024. arXiv: 2407.09146.
- [GWB25] Daniel Gratzer, Jonathan Weinberger, and Ulrik Buchholtz. *The Yoneda embedding in simplicial type theory.* 2025. arXiv: 2501.13229 [cs.L0]. url: https://arxiv.org/abs/2501.13229.
- [Gra+20] Daniel Gratzer et al. "Multimodal Dependent Type Theory". In: *Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science*. LICS '20. ACM, 2020. doi: 10.1145/3373718.3394736.
- [KV20] Krzysztof Kapulkin and Vladimir Voevodsky. "A cubical approach to straightening". In: *Journal of Topology* 13.4 (2020), pp. 1682–1700. doi: 10.1112/topo.12173.
- [Koc77] Anders Kock. "A simple axiomatics for differentiation". In: *Mathematica Scandinavica* 40.2 (1977), pp. 183–193.

References IV

- [Kud23] Nikolai Kudasov. Rzk. An experimental proof assistant based on a type theory for synthetic ∞-categories. 2023. url: https://github.com/rzk-lang/rzk.
- [Lic+18] Daniel R. Licata et al. "Internal Universes in Models of Homotopy Type Theory". In: 3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018). Ed. by Hélène Kirchner. Vol. 108. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2018, 22:1–22:17. doi: 10.4230/LIPIcs.FSCD.2018.22.
- [Lju24] Axel Ljungström. "Symmetric monoidal smash products in homotopy type theory". In: *Mathematical Structures in Computer Science* 34.9 (2024), pp. 985–1007. doi: 10.1017/S0960129524000318.
- [MW23] Louis Martini and Sebastian Wolf. *Internal higher topos theory*. 2023. arXiv: 2303.06437.
- [Mye25] David Jaz Myers. Liberating synthetic quasi-coherence from forcing. Topos Institute blog post. 2025. url: https://topos.institute/blog/2025-07-13-liberating-synthetic-quasi-coherence-from-forcing/.

References V

[MR23]	David Jaz Myers and Mitchell Riley. <i>Commuting Cohesions</i> . 2023. arXiv: 2301.13780 [math.CT].
[Pho90]	Wesley Phoa. "Domain theory in realizability toposes". In: (1990).
[PS25]	Leoni Pugh and Jonathan Sterling. When is the partial map classifier a Sierpiński cone? 2025. arXiv: 2504.06789.
[Ras25]	Nima Rasekh. Simplicial Homotopy Type Theory is not just Simplicial: What are ∞ -Categories? 2025. arXiv: 2508.07737 [math.CT]. url: https://arxiv.org/abs/2508.07737.
[Rie18]	Emily Riehl. On the directed univalence axiom. Online. Talk on work joint with Evan Cavallo and Christian Sattler. 2018. url: https://math.jhu.edu/~eriehl/JMM2018-directed-univalence.pdf.
[Rie23]	Emily Riehl. "Could ∞ -Category Theory Be Taught to Undergraduates?" In: Notices of the American Mathematical Society 70.5 (2023). doi: 10.1090/noti2692.
[RS17]	Emily Riehl and Michael Shulman. "A type theory for synthetic ∞-categories". In: <i>Higher Structures</i> 1 (1 2017), pp. 147–224. doi: 10.21136/HS.2017.06.

References VI

- [RV22] Emily Riehl and Dominic Verity. *Elements of* ∞-*Category Theory*. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2022. doi: 10.1017/9781108936880.
- [RSS20] Egbert Rijke, Michael Shulman, and Bas Spitters. "Modalities in homotopy type theory". In: Logical Methods in Computer Science 16.1 (2020). arXiv: 1706.07526.
- [Ril24] Mitchell Riley. A Type Theory with a Tiny Object. 2024. arXiv: 2403.01939 [math.CT]. url: https://arxiv.org/abs/2403.01939.
- [Sat19] Christian Sattler. *Idempotent completion of cubes in posets*. 2019. arXiv: 1805.04126 [math.CT].
- [SW25] Christian Sattler and David Wärn. *Untitled note on confluent colimits*. Online. 2025. url: https://www.cse.chalmers.se/~sattler/docs/confluent/new-2025.txt.
- [Sch13] Urs Schreiber. "Differential cohomology in a cohesive infinity-topos". 2013. eprint: 1310.7930.

References VII

[SS12]	Urs Schreiber and Michael Shulman. "Quantum Gauge Field Theory in Cohesive
	Homotopy Type Theory". In: Proceedings 9th Workshop on Quantum Physics and
	Logic, QPL 2012, Brussels, Belgium, 10-12 October 2012. Ed. by Ross Duncan
	and Prakash Panangaden. Vol. 158. EPTCS. 2012, pp. 109-126. doi:
	10.4204/EPTCS.158.8. url: https://doi.org/10.4204/EPTCS.158.8.

- [Shu18] Michael Shulman. "Brouwer's fixed-point theorem in real-cohesive homotopy type theory". In: *Mathematical Structures in Computer Science* 28.6 (2018), pp. 856–941. doi: 10.1017/S0960129517000147. url: https://doi.org/10.1017/S0960129517000147.
- [Shu19] Michael Shulman. All $(\infty, 1)$ -toposes have strict univalent universes. 2019. arXiv: 1904.07004 [math.AT].
- [Shu23] Michael Shulman. "Semantics of multimodal adjoint type theory". In: *Electronic Notes in Theoretical Informatics and Computer Science* Volume 3-Proceedings of MFPS XXXIX (Nov. 2023). issn: 2969-2431. doi: 10.46298/entics.12300.
- [SY25] Jonathan Sterling and Lingyuan Ye. *Domains and Classifying Topoi.* 2025. arXiv: 2505.13096.

References VIII

[SW	/ 21]	Thomas Streicher and Jonathan Weinberger. "Simplicial sets inside cubical sets". In: <i>Theory and Application of Categories</i> 37.10 (2021), pp. 276–286.
[WL	.20]	Matthew Z. Weaver and Daniel R. Licata. "A Constructive Model of Directed Univalence in Bicubical Sets". In: <i>Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science</i> . LICS '20. ACM, July 2020. doi: 10.1145/3373718.3394794.
[We	ea24]	Matthew Zachary Weaver. "Bicubical Directed Type Theory". PhD thesis. Princeton University, 2024.
[We	ei24a]	Jonathan Weinberger. "Internal sums for synthetic fibered $(\infty,1)$ -categories". In: Journal of Pure and Applied Algebra 228.9 (Sept. 2024), p. 107659. issn: 0022-4049. doi: 10.1016/j.jpaa.2024.107659.
[We	ei24b]	Jonathan Weinberger. "Two-sided cartesian fibrations of synthetic $(\infty,1)$ -categories". In: <i>Journal of Homotopy and Related Structures</i> 19.3 (2024), pp. 297–378. doi: 10.1007/s40062-024-00348-3.
[We	el18]	Felix Wellen. Cartan Geometry in Modal Homotopy Type Theory. 2018. arXiv: 1806.05966 [math.DG].

References IX

[Wil25] Mark Damuni Williams. *Projective Presentations of Lex Modalities*. 2025. arXiv: 2501.19187 [cs.L0]. url: https://arxiv.org/abs/2501.19187.