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∞-category theory

∞-categories:

higher morphisms and weak composition
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Applications: Derived algebraic geometry, stable homotopy theory, topological quantum field
theories, higher rewriting, . . .
Dream: (∞, 1)-category theory should be like 1-category theory, but up-to-homotopy.
Problems in analytic, set-theoretic foundations: heavy encoding and not homotopy-invariant. Can
we do better?
Yes, in synthetic foundations, and using the power of lattice theory and modal logic!

Functoriality and naturality for free! Reduction to finite-dimensional arguments
Proofs less model-dependent Verification via computer

“∞-category theory for undergraduates”(!?) [Rie23]
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Simplicial homotopy type theory

Question: How to extend HoTT to capture∞-categories?
Answer: (after Riehl–Shulman): HoTT + interval I := ∆1

Recall Emily’s lecture:

•

∆1 • ∆2 • • Λ2
1 • • E • •

• • • •

= = = =



Synthetic (∞, 1)-category theory

Definition (Synthetic∞-categories [RS17])

A type A is . . .

Segal or a pre-∞-category if A∆2

≃ AΛ2
1 :

{▲} ≃ {∧}

Rezk or a∞-category if it is Segal and A ≃ AE:

{•} ≃ {• ∼= •}

an∞-groupoid if AI ≃ A:
{•} ≃ {• → •}

Definition (hom type)

The hom type for a, b : A is: homA(a, b) :=
∑

f :I→A

f(0) = a× f(1) = b



Models and other synthetic approaches

Just as HoTT is the internal language of∞-toposes E (Awodey’s conjecture solved by
[Shu19]), sHoTT is the internal language of simplicial objects E∆

op

; cf. El Mehdi’s talk.

Models will be (internal) complete Segal spaces, cf. Martini and Wolf’s internal∞-topos
theory [MW23].

Rasekh [Ras25] constructs nonstandard models (as filter quotients).

There are also close parallels to Riehl–Verity’s∞-cosmos theory [RV22] and
Cisinski–Cnossen–Nguyen–Walde’s synthetic (∞, 1)-category theory [Cno25].

Some of our structure appears also in d’Espalungue’s internal approach to hierarchies of
higher structures [dAr23], cf. Sophie’s talk.



Previous work in sHoTT

Basic CT, fibered Yoneda lemma, adjunctions [RS17]

Limits and colimits [Bar22]

Cartesian fibrations and generalizations [BW23; Wei24a; Wei24b] (cf. also [RV22])

Conduché fibrations [Bar24]

Today: work in an extended modal framework, giving rise to:

directed univalent universe S for∞-groupoids and left fibrations [GWB24] (using modal
operators), cf. [Rie18; WL20; Wea24]

functorial Yoneda lemma for presheaves valued in S [GWB25]

cocompleteness, spectra, and generalized cohomology, in preparation

the synthetic∞-category Cat of∞-categories, in preparation



Formalizing∞-categories in Rzk

Kudasov has developed the Rzk proof assistant, implementing sHoTT:
https://rzk-lang.github.io/

Using Rzk we initiated the first ever formalizations of∞-category theory.

In spring 2023, with Kudasov and Riehl we formalized the (discrete fibered) Yoneda lemma of
∞-category theory: https://emilyriehl.github.io/yoneda/

alongside many other results

Many proofs in this∞-dimensional setting easier than in dimension 1!

Formalization helped find a mistake in original paper

More students & researchers joined us developing a library for∞-category theory:
https://rzk-lang.github.io/sHoTT/ Join us!

https://rzk-lang.github.io/
https://emilyriehl.github.io/yoneda/
https://rzk-lang.github.io/sHoTT/


Fibered Yoneda Lemma

Theorem (Yoneda Lemma for covariant families (Riehl–Shulman))

Let A be a Segal type, and a : A any term. For a covariant type family C : A→ U , evaluation
at ida is an equivalence:

evidCa :
(∏

x:A

homA(a, x)→ C(x)
)

≃−→ C(a)

The inverse map is given by

yC
a : C(a)→

(∏
x:A

homA(a, x)→ C(x)
)
, yC

a (u)(x)(f) :≡ f!u

Proof “simply” follows from naturality properties and covariance of homA(a,−).
There also exists a dependent version giving directed path induction.

Both have been formalized in Kudasov’s new proof assistant Rzk in [Kud23].

More general but easier than (analytic) 1-categorical proof!



Simplicial vs cubical models

Simplex category ∆ = {[n] | n ≥ 0}, Cube category □ = {[1]n | n ≥ 0}

Theorem ([KV20; Sat19; SW21])

Simplicial spaces [∆op,S] are an essential sub-∞-topos of cubical spaces [□op,S]

Internally, a cubical type A is simplicial if

isSimp(A) :≡
∏
i,j:I

isEquiv(A! : A→ Ai≤j∨j≤i).

This defines a lex modality à la [RSS20]; see also [Wil25].
We need the outer cubical layer to define the correct (categorical) universes (using [Lic+18;
Ril24]).



Multimodal type theory

Organize categorical operations via multimodal type theory (MTT) [Gra+20; Gra23b; Shu23].
MTT is parametrized by a mode theoryM, i.e. a 2-category with:

objects m (modes)

morphisms µ : m→ n (modalities)

2-cells µ : m→ n (natural maps of modalities)

A model is given by a 2-functor F :M→ Cat, with each Fµ lcc, and such that there are left
adjoints Lµ ⊣ Fµ.

Theorem (Normalization for MTT [Gra23a])

IfM is decidable, then MTT has normalization and decidable type-checking.

Actions on contexts and types: Interpret Γ/µ via Lµ and ⟨µ | A⟩ via Fµ.
Formation and introduction:

Γ/µ ⊢ A@m

Γ ⊢ ⟨µ |A⟩@n Γ, x :µ A ctx@n
µ-F

Γ/µ ⊢M : A@m

Γ ⊢ modµ(M) : ⟨µ |A⟩@n
µ-I



MTT: Variable and elimination rules

The variable rule comes from the counit:

µ : m→ n

Γ, x :µ A/µ ⊢ x : A@m
µ-var

For arbitrary 2-cells we get more generally:

µ, ν : m→ n α : µ⇒ ν

Γ, x :µ A/µ ⊢ xα : Aα@m
α-var

Weakening:

µ : m→ n α : µ⇒ mods(Γ′)

Γ, x :µ A,Γ′ ⊢ xα : Aα@m
α-wk

Elimination is given by pattern matching:

µ : m→ n ν : n→ o
Γ, x :ν ⟨µ |A⟩ ⊢ B@o
Γ/ν ⊢M0 : ⟨µ | A⟩@n

Γ, y :νµ A ⊢M1 : B[modµ(y)/x]@o

Γ ⊢ letν modµ(x)←M0 in M1 : B[M0/x]@o
µ,ν-E

From these we can derive coercion

coeα : ⟨µ | A⟩ → ⟨ν | A⟩

and composition:
comp : ⟨µν | A⟩ → ⟨µ |⟨ν|A⟩⟩



Triangulated type theory

Triangulated type theory TT� is sHoTT + MTT with single mode m and the following mode
morphisms:

Opposite op: ⟨op | A⟩ has its n-simplices reversed
Discretization/core ♭: ⟨♭ | A⟩ → A is the maximal subgroupoid of A
Codiscretization ♯: A→ ⟨♯ | A⟩ is localization at ∂∆n → ∆n (for crisp closed types)
Twisted arrows tw: ⟨tw | A⟩ has as n-simplices:

an . . . a2 a1 a0

an+1 . . . a2n−2 a2n−1 a2n

Mode theory:

♭ ◦ ♭ = ♭ ◦ op = ♭ ◦ ♯ = tw ◦ ♭ = op ◦ ♭ = ♭ ♯ ◦ ♯ = ♯ ◦ ♭ = ♯ ◦ op = op ◦ ♯ = ♯

op ◦ op = id ε : ♭→ id η : id→ ♯

η · ♯ = ♯ · η = id : ♯→ ♯ ♭ · η = id : ♭→ ♭

plus some coherence conditions for tw



Some axioms for triangulated type theory I

Axiom (Interval I)

There is a bounded distributive lattice (I : Set, 0, 1,∨,∧)

Axiom (Reversal on I)

There is an equivalence ¬ : ⟨op | I⟩ → I which swaps 0 for 1 and ∧ for ∨.

Axiom (I detects discreteness)

If A :♭ U then ⟨♭ | A⟩ → A is an equivalence if and only if A→ (I→ A) is an equivalence.

Axiom (Global points of I)

The map B→ I is injective and induces an equivalence B ≃ ⟨♭ | I⟩.



Some axioms for triangulated type theory II

Axiom (Cubes separate)

f :♭ A→ B is an equivalence if and only if the following holds:

Πn:♭N isEquiv
(
f∗ : ⟨♭ | In → A⟩ → ⟨♭ | In → B⟩

)
Compare/recall from Felix’s and Ulrik’s talks:

Axiom (Synthetic quasi-coherence (SQC) [Ble23])

Let I→ A be a finitely presented I-algebra, i.e., A ≃ I[x1, . . . , xn]/(r1 = s1, . . . , rn = sn), then
the evaluation map is an equivalence:

ev ≡ λa, f.f(a) : A ≃ (homI(A, I)→ I)

Versions of the latter axiom appear in synthetic differential geometry (Kock–Lawvere axioms)
[Koc77], synthetic algebraic geometry [CCH24], and synthetic domain theory [SY25]. For more
context and a new categorical discussion see [Mye25].



Applications of SQC I

Lemma (Phoa’s principle [Pho90] and [PS25])

(I→ I) ≃ ∆2 → I× I

A version of this also appears in ongoing work on synthetic Stone duality [CGM25], see also
Hugo’s upcoming talk and [Che+24]:

Lemma (Generalized Phoa’s principle)

(In → I) ≃ Pos(Bn, I)

(∆n → I) ≃ Pos([0 ≤ . . . ≤ n], I)

Theorem

I is simplicial.

∆n is a category.



Applications of SQC II

Theorem

If A :♭ U is discrete then A is simplicial.

After Gratzer, using ♭ ⊣ ♯ one can prove that N is discrete.

Corollary

B and N are both discrete and simplicial, i.e., groupoids.

Warning: The theorem is false for general Rezk types, e.g. consider ∆2 ⨿∆1 ∆2.



Towards the∞-category of∞-groupoids

Covariant families are∞-groupoids fibered over∞-categories.

They admit transport: (−)! :
∏
a,b:X

(a→X b)→ A(a)→ A(b)

If X is Segal, then each fiber A(a) is discrete.

Can we take
∑
A:U

isCov(A)?

No: isCov(A) just means that A is discrete; doesn’t see variance.

Need a predicate that yields covariance over all possible contexts.

Solution: Amazing fibrations due to M. Riley (2024): A Type Theory with a Tiny Object ,
arXiv:2403.01939; based on Licata–Orton–Pitts–Spitters ’18 (which was used for similar
purposes by Weaver–Licata ’20)

https://arxiv.org/abs/2403.01939


Amazingly covariant families

Consider isCov(A : I→ U) ≃
∏

x:A(0)

isContr
( ∑
y:A(1)

(x→α y)
)
, where α : homI(0, 1).

This gives a predicate isCovI : U I → Prop.

Definition (Amazingly covariant types)

Let A : U be a type. It is amazingly covariant if and only if the following proposition is inhabited:

isaCov(A) :≡
(
isCovI(λi.A

η(i))
)

I
,

where Aη is the image of A under the unit ηU : U → (U I)I.



The∞-category of∞-groupoids

Define the universe of simplicial types and∞-groupoids, resp.:

U� :≡
∑
A:U

isSimp(A) S :≡
∑
A:U�

isaCov(A)

Theorem (The∞-category of∞-groupoids [GWB24])

1 S classifies amazingly covariant families in U�:

E ≃ B ×S S∗ S∗

B S

ξ
⌟

π

χξ

2 S is closed under Σ, identity types, and finite (co)limits.

3 S is directed univalent:

arrtofun : (∆1 → S) ≃

( ∑
A,B:S

(A→ B)

)

4 S is Segal and Rezk, i.e., an∞-category.



Directed univalence

1 Since S classifies (amazingly) covariant families, there is a map

arrtofun :≡ λF.(F 0, F 1, αF
! : F 0→ F 1) : (∆1 → S)→

( ∑
A,B:S

(A→ B)
)
.

2 In the other direction, we consider the mapping cone/directed glue type (cf. cubical type
theory and Weaver–Licata ’20):

Gl :≡ A,B, f.λi.
∑
b:B

(i = 0)→ f−1(b) :
( ∑

A,B:S
(A→ B)

)
→ (∆1 → S)

3 Then argue that these are inverses up to homotopy.



Application: directed structure identity principle (DSIP)

Theorem (DSIP for pointed spaces)

Let S∗ :≡
∑
A:S

A. Then for (A, a), (B, b) : S∗ we have:

homS∗((A, a), (B, b)) ≃
∑

f :A→B

f(a) = b

Theorem (DSIP for monoids)

Consider the type (category!) of (set-)monoids

Monoid :≡
∑

A:S≤0

∑
ε:A

∑
·:A×A

isAssoc(·)× isUnit(·, ε).

Then homomorphisms from (A, εA, ·A, αA, µA) to (B, εB , ·B , αB , µB) correspond to set maps A→ B
compatible with multiplication and units.



Towards synthetic higher algebra

We can internally define presheaf categories PSh(C) :≡ ⟨op|C⟩ → S.

Definition (∞-monoids)

The category Mon∞ of∞-monoids is the full subcategorya of PSh(∆) defined by the predicate

φ(X :♭ PSh(∆)) :≡
∏

n:Nat

isEquiv(⟨X(ιk)k<n⟩ : X(∆n)→ X(∆1)n)

aneed the codiscrete modality ♯

This encodes the structure of a homotopy-coherent monoid. Multiplication is given through

µX : X(∆1) ≃ X(∆1)2 → X(∆1).

Definition (∞-groups)

The category Grp∞ of∞-groups is the full subcategory of Mon∞ defined by the predicate

φ(X :♭ Mon∞) :≡ isEquiv(λx, y.⟨x, µX(x, y)⟩ : X(∆1)2 → X(∆1)2)

Again using DSIP, these categories have the right types of morphisms.



Functorial Yoneda lemma and presheaf theory

Let ΦC : ⟨op | C⟩ × C → S be the unstraightening of the twisted arrow fibration. Then define
the Yoneda embedding yC := λc.ΦC(−, c) : C → Ĉ := S⟨op | C⟩.

Theorem (Functorial Yoneda lemma)

There is a natural isomorphism ΦC(y(−),−) ∼= eval : ⟨op | C⟩ × Ĉ → S.

Theorem (Density)

If X :♭ Ĉ, then X ≃ lim−→
⟨op | X̃⟩

y ◦ πop.

Theorem (Descent)

Let A be a category and F :♭ C → Â, then Â/ lim−→
c:C

F (c) ≃ lim←−
c:C

Â/F (c).

Theorem (Cocompletion)

Ĉ is the free cocompletion of C: y∗ : (Ĉ →cc E) ≃ (C → E)



Kan extensions, cofinal functors, and Quillen’s Theorem A

Definition (Kan extensions)

Given f :♭ C → D and a category E, the left Kan extension lanf is the left adjoint to
f∗ : ED → EC .

Theorem (Colimit formula)

Let E be cocomplete and X :♭ C → E, then lanfX d ≃ lim−→(C ×D D/d→ C → E).

Definition (Cofinal functors)

A functor f :♭ C → D is right cofinal if for every X :♭ D → S we have lim−→
D

X ≃ lim−→
C

X ◦ f .

Proposition (Characterization of right cofinality)

A functor is right cofinal iff it is left orthogonal to all right fibrations.

Theorem (Quillen’s Theorem A [GWB25])

A functor f :♭ C → D is right cofinal if and only if LI(C ×D d/D) ≃ 1 for each d :♭ D.



Sifted colimits

Definition

A crisp∞-category C is sifted if lim−→
C

: SC → S preserves finite products.

With Quillen’s Theorem A we get:

Proposition

A crisp∞-category C is sifted if and only if for all n : N the map C ! : C → Cn is right cofinal.

Theorem

If C has finite coproducts and sifted colimits then it is cocomplete.



Filtered colimits

Definition

An∞-category is finite if it is generated by 0, 1, or I under pushouts.

Definition

A crisp∞-category C is filtered if lim−→ : SC → S preserves finite limits.

Definition

A crisp∞-category C is weakly filtered if C ! : CX → C is right cofinal for all finite
∞-categories X.

We can adapt [SW25] to prove:

Theorem

If C has finite and filtered colimits then it is cocomplete.



Spectra

Stable homotopy theory studies the limit behavior of spaces upon repeatedly suspending them. Spaces
get replaced by spectra which correspond to symmetric monoidal∞-groupoids and are central to higher
algebra:

Definition (The∞-category of spectra)

The∞-category of spectra is defined as the (HoTT) limit: Sp :≡ lim←−(S∗
Ω← S∗

Ω← . . .).

Proposition

Sp is closed under finite limits and filtered colimits.

Following [Cno25], using the cofinality of N we can prove:

Proposition

Ω : Sp→ Sp is an equivalence.

Proposition

Sp is finitely cocomplete, and pushouts coincide with pullbacks.

Corollary

Sp is cocomplete.



Ordinary homology theories and smash product

For a commutative ring R, consider the Eilenberg–Mac Lane spectrum functor
1 7→ HR : S → Sp.

Theorem

The family of functors Hi : S → Ab defined by Hi X :≡ πi H(X;R) satisfies the
Eilenberg–Steenrod axioms.

Via directed univalence we can define the smash product − ∧− : S∗ × S∗ → S∗, immediately
recovering the results proven in Book HoTT such as associativity [Lju24]. Using directed
univalence again, we can lift the following to a functor on spectra:

Definition

The smash product of spectra X,Y : Sp is given by

X ⊗ Y :≡ lim−→
i,j:N

Ωi+jΣ∞(Xi ∧ Yj).



The∞-category of∞-categories

Recently, we constructed the long desired∞-category of∞-categories Cat
synthetically.

Just as S is the classifier for (amazingly) covariant fibrations, Cat should be the classifier
for (amazingly) cocartesian fibrations, see [BW23].

A direct attempt to define Cat in this way seems intractible. However, an approach via
locally cocartesian arrows works. Over I this amounts to:

isLCC :
∏
A:U I

∏
a:(i:I)→A(i)

Prop

isLCC(A, a) :≡
∏

b:(i:I)→A(i)

∏
p:a0=b0

isContr

 ∑
t:(i,j:∆2)→A(i)

t|Λ2
0
= [a, b, p]


We then define Cat by:

Cat :≡
∑
A:U�

isRezk(A)× aIsInner(A)× aHasLCCLifts(A)× aLCCLiftsCompose(A)



Classifying property and directed univalence

Theorem (Gratzer–W–Buchholtz ’25)
1 Cat classifies (amazingly) cocartesian families in U�:

E ≃ B ×Cat Cat∗ Cat∗

B Cat

ξ
⌟

π

χξ

2 Cat is directed univalent:

arrtofun : (∆1 → Cat) ≃

 ∑
A,B:Cat

(A→ B)


3 Cat is a category.



Cocartesian directed gluing

Definition

Let F0, F1 :♭ X → U� be cocartesian fibrations, and α :♭
∏
x:X

F0(x)→ F1(x) be a cocartesian

functor. The directed gluing is given by:

Gl(F0, F1, α) : I×X → U�

Gl(F0, F1, α)(i, x) :≡
∑

f :F1(x)

(i = 0)→ α(x)−1(f)

Theorem

If X is a category and F0, F1, α are as above, then Gl(F0, F1, α) is cocartesian.



Outlook

more on Conduché fibrations and the (∞, 2)-topos perspective, see [AM24]

synthetic∞-monads,∞-operads, (symmetric) monoidal∞-categories, . . .

(Sp,⊗,S) as an s.m.c. (or the unit in presentable stable∞-categories)

internal higher topos theory

metatheory of (higher?) type theories internally in type theory

computational version and metatheory of modal sHoTT

Connections to synthetic higher & differential geometry [Sch13; SS12; Shu18; Wel18;
CCH24; MR23] and synthetic Stone duality & (light) condensed type theory ([BC24;
Che+24; CGM25])

more formalization

. . .
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