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Introduction

Useful features of the effective topos Eff :
▶ It is a(n elementary) topos, in particular locally cartesian closed.
▶ All functions on natural numbers are Turing-computable (Church Thesis).
▶ It contains a small subcategory which is complete but not a preorder

(modest sets).

So Eff allows to construct realisability models of extensional type theories with
an impredicative universe of types.

Hyland. The effective topos. 1982
Hyland. A small complete category. 1988
Hyland, Robinson, Rosolini. The discrete objects in the effective topos. 1990
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Introduction
Current line of research: to identify higher versions of Eff that
▶ interpret intensional type theories with a univalent impredicative universe,
▶ and provide examples of elementary higher toposes.

Desiderata for every higher-dimensional effective topos:
it should contain Eff as the full subcategory of 0-types (=h-sets).

Straightforward options (taking simplicial or cubical objects in Eff or Asm) add
0-types: Eff is already a completion (under quotients of equivalence relations),
so taking Eff ∆op

adds those colimits again at the level of 0-types.
An eq. relation E⇒ X in Eff has two distinct quotients in Eff ∆op

:
the (discrete simplicial set on the) quotient X/E and (the nerve of) E⇒ X.

Today: a 2-dimensional proposal, using groupoids.
Awodey, E. Toward the effective 2-topos. arXiv:2503.24279

https://arxiv.org/abs/2503.24279
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The effective topos as a colimit completion
▶ Eff is the exact completion of the regular category of assemblies Asm :

Eff = (Asm)ex/reg
Carboni, Freyd, Scedrov. A Categorical approach to Realizability and Polymorphic Types. 1988
▶ since Asm is the regular completion of the lex category of partitioned

assemblies PAsm , we also have:

Eff = (Asm)ex/reg = (PAsm)ex/ lex

Robinson, Rosolini. Colimit completions and the effective topos. 1990
Carboni. Some free constructions in realizability and proof theory. 1995

As such, Eff embeds into presheaves on PAsm ,
and can be characterised as a subcategory of×PAsm .
Lack. A note on the exact completion of a regular category, and its
infinitary generalizations. 1999
Hu, Tholen. A note on free regular and exact completions and their
infinitary generalizations. 1996

PAsm ×PAsm

Asm Eff

y
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The effective topos as a colimit completion

PAsm Asm yQ A yP

Coh(×PAsm) yP C and

Eff B A X

×PAsm

Cpt (×PAsm) yP K

y

K′ C

K C × C

⌟
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Outline

Give:
1. Definition of coherent groupoid
2. Quillen model structure on Gpd(×PAsm)

such that:

Eff Gpd0(
×PAsm)

Eff2

CohGpd(×PAsm) Gpd(×PAsm)

⌟
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⌟
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Compact groupoids

Say that a compact discrete groupoid is a discrete groupoid K on a compact
presheaf K.

A groupoid G is pseudo-compact if there is

K→ G

essentially surjective on objects from a compact discrete groupoid K, that is:

• G1 G0

K G0

⌟

NB: A discrete groupoid X is pseudo-compact iff X is compact.
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Coherent groupoids

A groupoid G is coherent if

1. G is pseudo-compact

2. ∆1 : G→ G× G is pseudo-compact:
for every pseudo-pullback with C pseudo-compact

C′ G

C G× G

⌟ps
∆

C′ is also pseudo-compact.

3. ∆2 : ∆1→ ∆1 ×G×G∆1 is pseudo-compact (in the sense above).

NB: A discrete groupoid X is coherent iff X is a coherent presheaf.



9

Recognising coherent groupoids

Lemma
A groupoid G is coherent if and only if
there are a groupoid K = (K1⇒ K0) and a (weak) equivalence K→ G such that:

1. K0 is a compact object: there is P s.t. yP↠ K0

2. K1→ K0 × K0 is compact:

for every K compact and
K′ K1

K K0 × K0

⌟ K’ is compact.

3. K1→ K1 ×K0×K0 K1 is compact.
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The Quillen model structure on groupoids

We use the strong stacks model structure:

Theorem (Joyal & Tierney)
There is a model structure on Gpd(×PAsm) = [PAsm ,Gpd] where:
▶ The cofibrations are the functors that are objectwise injective on objects.
▶ The weak equivalences are the functors that are objectwise equivalences of

groupoids (= functors that are fully faithful and essentially surjective on
objects.)

Joyal, Tierney. Strong stacks and classifying spaces. 1991

This holds for Gpd(E) with E a Grothendieck topos.
For E = Set , it coincides with the folk model structure on Gpd, but it has less
fibrations otherwise (since equivalences ̸= strong equivalences in a general E ).
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The Quillen model structure on groupoids

We use the strong stacks model structure:

Theorem (Joyal & Tierney)
There is a model structure on Gpd(×PAsm) = [PAsm ,Gpd] where:
▶ The cofibrations are the functors that are objectwise injective on objects.
▶ The weak equivalences are the functors that are objectwise equivalences of

groupoids (= functors that are fully faithful and essentially surjective on
objects.)

Joyal, Tierney. Strong stacks and classifying spaces. 1991

This model structure agrees with the restriction to 1-types of the injective model
structure on simplicial presheaves used by Shulman to construct univalent uni-
verses in (∞, 1)-toposes.
Shulman. All (∞, 1)-toposes have strict univalent universes. 2019
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The Quillen model structure on coherent groupoids

Proposition
The two weak factorisation systems from the strong stacks model structure on
Gpd(×PAsm) restrict to CohGpd(×PAsm).

Follows from:

Lemma
If F→ G is an equivalence of groupoids and F is coherent, then so is G.

Lemma (Joyal–Tierney)
A trivial fibration is a strong equivalence of groupoids.
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The main result

Theorem
Let G be a coherent groupoid which is also a fibrant 0-type.
Then π0G is coherent (in×PAsm) and G→ π0G is a strong equivalence.
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⌟

∼

∼
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The main result

Theorem
Let G be a coherent groupoid which is also a fibrant 0-type.
Then π0G is coherent (in×PAsm) and G→ π0G is a strong equivalence.

Corollary
The full subcategory of CohGpd(×PAsm) on the fibrant 0-types is equivalent to
the effective topos:

CohGpd(×PAsm)0,f ≃ Coh(×PAsm) = Eff

Eff2 := CohGpd(×PAsm) is the restriction to 1-types of the effective ∞-topos con-
structed by M. Anel, S. Awodey, R. Barton.
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