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What is intuitionistic modal logic

= intuitionistic logic, fundamental alternative to classical logic, motivated
for constructive reasoning, rejecting e.g. excluded middle law AV —A

= modal logic, adding modal operators to propositional /first-order
language, with many interpretations like necessity, epistemic knowledge,
provability, deontic, etc.

= intuitionistic modal logic? [Prawitz, 1965, Fitch, 1948]
Two trends in intuitionistic modal logic:

= [ntuitionistic modal logic, motivated by meta-logical properties,
IK [Fischer-Servi, 1984, Simpson, 1994]

= Constructive modal logic, motivated by applications in computer science,
CCDL [Wijesekera, 1990], CK [Bellin et al., 2001]
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Let M = (W, <, V) and x, X € W.
- xIFAD B iff VX.(x< X implies X ¥ A or X I B).
- Monotonic valuation: x < ¥ = V(x) C V(X);
Hereditary property (HP): if xI- A and x < y then yIF A

Language and Kripke semantics of ML:
A:=peAt| L|(A—A) | DA

Other connectives —, A are defined as usual and ¢ = —[J-.
Let M = (W,R,V) and x,y € W

- xIF OB iff Vy.(Rxy implies y |- B)

- xIF OB iff Jy.(Rxy and yI- B)

> IML combines both types of language and semantics together
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Bi-relational semantics of IK

Let M = (W, <, R, V) be a bi-relational model where

W non-empty set < pre-order
R binary relation V. W — P(At) with monotonicity

(FC) forward-confluent Vy.x <y Vz.Rxz Ju.Ryu & z< u
(BC) backward-confluent Vz.Rxz Vu.z < u3Jy.Ryu & x<y

R R
Yo ------->5 > U yﬁ» ———————— >e U
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| |
| |
X ‘4 X z
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= interpretation of modalities:
global 0: M, xEOA iff Vyx<yVz(Ryz= M,zE A),
local ¢: M,xE QA iff  Jy.(Rxy & M,yE A).

= Hereditary property of (-formulas is ensured by (FC).
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Axiom systems of several IMLs

Axiom system for IK:

- (Kg) O(A > B) > (JA > OB)
- (Ko) O(AD B) D (0AD OB)
- (MP) (Nec)

- (N) =0L

- (DP) O(AV B) D OAV OB

- (FS) (CA>OB)>O(AD B)
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Axiom systems of several IMLs

Axiom system for LIK [Balbiani et al., 2024b]:

- (Kg)O(A> B) > (DA>0OB)
- (Ko) O(AD B) D (0AD OB)

- (MP) (Nec)

- (N) =0L

- (DP) O(AV B) D OAV OB

- (CD/RV) O(AV B) > GAV OB
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Axiom systems of several IMLs

Axiom system for FIK [Balbiani et al., 2024a]:

- (Kg) O(A > B) > (JA > OB)
- (Ko) O(AD B) D (0AD OB)

- (MP) (Nec)

- (N) =0L

- (DP) O(AV B) D OAV OB

- (wCD) O(AV B) D ((0A D> 0OB) > OB).
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Axiom systems of several IMLs

Axiom system for CCDL:

- (Kg)O(AD>B)D> (DADOB)
- (Ke) O(AD B)D (0OAD 0OB)
- (MP) (Nec)
- (N) =0L
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Axiom systems of several IMLs

Axiom system for CK:

- (Kg) O(A > B) > (OA > OB)
- (Ke) O(AD B)D (0OAD 0OB)
- (MP) (Nec)
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Hierarchy of several IMLs

IK LIK

7

CCDL+(DP)

FIK

CCDL

CK
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Proof theory in the literature

Existing sequent calculi for IK and its extensions:

Single-conclusion nested calculi | [StraBburger, 2013, Galmiche and Salhi, 2010]
Multi-conclusion nested calculus | [Kuznets and StraBburger, 2019]

Single-conclusion labelled calculi | [Simpson, 1994]
Fully labelled sequent calculi [Marin et al., 2021, Girlando et al., 2023]
Nested calculi with display rules | [Goré et al., 2010]
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Existing sequent calculi for IK and its extensions:

Single-conclusion nested calculi | [StraBburger, 2013, Galmiche and Salhi, 2010]
Multi-conclusion nested calculus | [Kuznets and StraBburger, 2019]

Single-conclusion labelled calculi | [Simpson, 1994]
Fully labelled sequent calculi [Marin et al., 2021, Girlando et al., 2023]
Nested calculi with display rules | [Goré et al., 2010]

We seek a “suitable” calculus in which

= all rules are invertible
= terminating proof-search is supported

= a countermodel can be directly extracted from a failed proof

In [Balbiani et al., 2024a], a bi-nested calculus for FIK with these features is
provided.

» Can we provide a similar bi-nested calculus for 1K?
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From sequent to bi-nested sequent

» sequent: ' = A, pair of multisets of formulas

» nested sequent: S=A1,..., A= B1,....B;,[Ti],...,[Tm]
[Briinnler, 2009]

o \f\ /

Ak:>Bl,...,

» bi-nested sequent:
5:A1,....,Ak:> B1,...,Bj,<T1>,...,<Tm>,[Q1],...,[Qn]

tr(T1) e (Tm) tr( Q1)

Ny

Ak:>B1,...,
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Bi-nested sequent calculus

= two types of nesting are used, roughly

[] simulating R, see [Briinnler, 2009, Poggiolesi, 2009]
(-) simulating <, see [Fitting, 2014, Das and Marin, 2023]
e.g.
Gl = A, (A= B)) . Gl = A, 0A,[Z = M, A]} -
G(r = A,A> B} UG = A0AZ= O T
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Bi-nested sequent calculus

= two types of nesting are used, roughly

[] simulating R, see [Briinnler, 2009, Poggiolesi, 2009]
(-) simulating <, see [Fitting, 2014, Das and Marin, 2023]
e.g.
G{Ir = A, (A= B)} (or) G{I = A, 0A [ =ML A]} (0r)
Gr=AA>B 7 “Gr=00AE=n0}) %
= (Og) is global while (Or) is local
G{Ir = A, (= [=A])} (O) G{I = A, 0A [ =TLA]} (Or)
G{Ir = A,0A} 8 G{I = A, 0A,[x = N]} §
= interactive rules characterizing (FC) and (BC)
GIlr=A(x=M[A=0"]),[N=0]} .
' (interg)
G{Ir= A, (X=M),[\N= 0]}
GIFr=AA=0,(X=M],(=[Z=M)
: (interyc)

G{r=A4,A=0,(z=N)]}
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The bi-nested calculus Cik

QRLéA}uﬂ QTéTA}Uﬂ QFpéAm}M)
GABI=4} Gr=44) Gr=48
GMARFéA}<” G{r = A, AAB} ()

GrLA=A}  G(rB=4} Gr=AAB)
G{I,AVB= A} (Va) G{I = A, AV B} (Ve)
G, A>B=AA}  G{I,B= A} G{Ir = A, (A= B)}
GI.ASB= A) >0) YW EY B
G{ILOA= A,[X,A=N]} 0 G{lr= A, (= [=A])} 0
GUDAﬁAﬁém}(L> G{r,= A,0A} Cr)
G{Ir= A [A=]} ©0) G{I = A, 0A [ = M A]} (©)

G{I,0A= A}
G{I,I"= A ("X =M}
G{I,I"=A(X=M}
G{r = A (X=T1,[A=0%),[AN= O]}
G{l = A, (X = M), [N= 0]}
Gl =AA=06,(X=N),(=[E=N])}
G{Ir = A A= 06,(X = M)}

G{I = A, 0A [ = N]}

(trans)

(interg)

(interpc)
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Example: Proof

Example
Axiom (FS): (Op D Og) D O(p D q) is provable in Cik.
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Example: Proof

Example
Axiom (FS): (Op D Og) D O(p D q) is provable in Cik.

Let G{}=0pDOg={{ N and G{}=0pD>0g=[= (p= )], { }).

(id)
(B0)
(1)

G(G(0p> Ta= o= arl)) () G(G(0a=ar=dl)

G1{G{0Op D Oq = Op,[p = q]}} G{G{0g = [p= q|}}
G{G{0p D Og= [p= q|}}

G{0pD0g=[={(p=ql.(=[p=d)}
G{0p20q=[= (p= g}

OpDOq= (OpD>Ug=[=pDq))

OpD0g=(=[=pDq)) (Or)

Op>0Og=0(p>q) )

(trans)
(interpc)

(Or)

(trans)
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Termination and completeness argument

= simple loop-checking is sufficient
= with saturation, we provide a terminating proof-search strategy
= an extra annotation system is used for bookkeeping

= 3 saturated sequent with annotations is regarded as a model

Let A be a formula. Proof-search for the sequent = A terminates with
a finite derivation in which all the leaves are axiomatic or there is one
saturated leaf.

Soundess and completeness

Cik is sound and complete w.r.t. the bi-relational semantics.
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» F=-0-p D Opis not an IK-validity.
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We run ProofSearch(F), initializing with 2 F By backward applications of the
rules, one branch of the derivation unfolds as
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Step 1: obtain a saturated leaf

» F=-0-p D Opis not an IK-validity.

We run ProofSearch(F), initializing with 2 F By backward applications of the
rules, one branch of the derivation unfolds as
(4,6); 2 F,(=0=p = Op, 0=p, (=0=p = 0=p,[2 p,=p, {p = )], (=0-p = 0=p, [p = —p, L])))
(4,6); = F.(=0=p = Op,0-p, (~0-p 3 0-p. [ p.op. (P> )], (S [P 1))
2 F, (=0—p = Op, 0-p, (~0-p = 0-p,[= p,-p, (p = L)]))

(Or)
(>0
(trans)

(Br)

(interyc)

(2r)

2 F,(~0-p = Op, 0-p, (~0-p = 0-p, [ p,—p]))

2 F,(=0=p= Op, 0=p, (~0-p 2 0-p,[2 )

2 F,(=0-p = Op, 0-p, (~0-p = [ Al))

2 F (~0-p = Op,0-p, (3 [5 pl)
2 F,(=0—p = Op, 0-p)
2 F,(=0-p = Op)

2F

(o0)

(Or)

We obtain a global-saturated ann-sequent So = (4, 6); 2F (S1) where Sy is:
~0=p = 0=p, Op, (~0=p = 0-p, [ p,=p, (p = L)], (~0—p = 0-p, [p = =p, 1])).
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where 57 is:
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further let
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where 57 is:

~0=p = 0=p,0p, (~0-p 2 0-p,[2 p,=p, (p 2 L], (=0-p = 0=, [p = —p, L])).

further let
2 3 4 5 6
Sy = =0-p = O-p,[= p,—p, (p= L)],(=0-p = O-p,[p= —p, L]
3 4 4
53::>P7_‘P><P:>J-> 54:P:>J-
5 6 6
S5 = =0-p= O—p, [p= —p, L] Ss=p=—p, L
Se
[ ] » W= {XSOaX517X$27X537X557X56}
S e / . s, = x5, < x5, < x5, < Xs5, X5, < X5, (plus reflexivity)
T = Rxs,Xs,, Rxs;xs,
|
} = V(xs,) =0 for i # 6; V(xs,) = {p}
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S, e—— o We can verify xs, ¥ =0-p D Op
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Conclusion and perspectives

To sum up, the bi-nested C\k has the following properties:

= all rules are invertible
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Thanks for your attention!
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