

# Intuitionistic K: Proofs and Countermodels

Han Gao<sup>†</sup>, Marianna Girlando\*, Nicola Olivetti<sup>†</sup>

†LIS, Aix-Marseille Université, CNRS \*ILLC, University of Amsterdam

 $8^{\rm th}$  Sep. 2025 @ CIRM, Luminy Synthetic mathematics, logic-affine computation and efficient proof systems

• **intuitionistic logic**, fundamental alternative to classical logic, motivated for constructive reasoning, rejecting e.g. *excluded middle law*  $A \lor \neg A$ 

- intuitionistic logic, fundamental alternative to classical logic, motivated for constructive reasoning, rejecting e.g. excluded middle law  $A \lor \neg A$
- modal logic, adding modal operators to propositional/first-order language, with many interpretations like necessity, epistemic knowledge, provability, deontic, etc.

- **intuitionistic logic**, fundamental alternative to classical logic, motivated for constructive reasoning, rejecting e.g. *excluded middle law*  $A \lor \neg A$
- modal logic, adding modal operators to propositional/first-order language, with many interpretations like necessity, epistemic knowledge, provability, deontic, etc.
- intuitionistic modal logic? [Prawitz, 1965, Fitch, 1948]

- **intuitionistic logic**, fundamental alternative to classical logic, motivated for constructive reasoning, rejecting e.g. *excluded middle law*  $A \lor \neg A$
- modal logic, adding modal operators to propositional/first-order language, with many interpretations like necessity, epistemic knowledge, provability, deontic, etc.
- intuitionistic modal logic? [Prawitz, 1965, Fitch, 1948]

- **intuitionistic logic**, fundamental alternative to classical logic, motivated for constructive reasoning, rejecting e.g. *excluded middle law*  $A \lor \neg A$
- modal logic, adding modal operators to propositional/first-order language, with many interpretations like necessity, epistemic knowledge, provability, deontic, etc.
- intuitionistic modal logic? [Prawitz, 1965, Fitch, 1948]

Two trends in intuitionistic modal logic:

- Intuitionistic modal logic, motivated by meta-logical properties,
   IK [Fischer-Servi, 1984, Simpson, 1994]
- Constructive modal logic, motivated by applications in computer science,
   CCDL [Wijesekera, 1990], CK [Bellin et al., 2001]

Language and Kripke semantics of Int:

$$A ::= p \in \mathsf{At} \mid \bot \mid (A \lor A) \mid (A \land A) \mid (A \supset A)$$

Language and Kripke semantics of Int:

$$A ::= p \in \mathsf{At} \mid \bot \mid (A \lor A) \mid (A \land A) \mid (A \supset A)$$

Let  $\mathcal{M} = (W, \leq, V)$  and  $x, x' \in W$ .

- $x \Vdash A \supset B$  iff  $\forall x'. (x \le x' \text{ implies } x' \not\Vdash A \text{ or } x' \Vdash B)$ .
- Monotonic valuation:  $x \le x' \Rightarrow V(x) \subseteq V(x')$ ; Hereditary property (HP): if  $x \Vdash A$  and  $x \le y$  then  $y \Vdash A$

Language and Kripke semantics of Int:

$$A ::= p \in \mathsf{At} \mid \bot \mid (A \lor A) \mid (A \land A) \mid (A \supset A)$$

Let  $\mathcal{M} = (W, \leq, V)$  and  $x, x' \in W$ .

- $x \Vdash A \supset B$  iff  $\forall x'. (x \le x' \text{ implies } x' \not\Vdash A \text{ or } x' \Vdash B)$ .
- Monotonic valuation:  $x \le x' \Rightarrow V(x) \subseteq V(x')$ ; Hereditary property (HP): if  $x \Vdash A$  and  $x \le y$  then  $y \Vdash A$

Language and Kripke semantics of ML:

$$A ::= p \in At \mid \bot \mid (A \rightarrow A) \mid \Box A$$

Other connectives  $\rightarrow$ ,  $\wedge$  are defined as usual and  $\lozenge \equiv \neg \Box \neg$ .

Language and Kripke semantics of Int:

$$A ::= p \in \mathsf{At} \mid \bot \mid (A \lor A) \mid (A \land A) \mid (A \supset A)$$

Let  $\mathcal{M} = (W, \leq, V)$  and  $x, x' \in W$ .

- $x \Vdash A \supset B$  iff  $\forall x'. (x \le x' \text{ implies } x' \not\Vdash A \text{ or } x' \Vdash B)$ .
- Monotonic valuation:  $x \le x' \Rightarrow V(x) \subseteq V(x')$ ; Hereditary property (HP): if  $x \Vdash A$  and  $x \le y$  then  $y \Vdash A$

Language and Kripke semantics of ML:

$$A ::= p \in At \mid \bot \mid (A \rightarrow A) \mid \Box A$$

Other connectives  $\rightarrow$ ,  $\land$  are defined as usual and  $\lozenge \equiv \neg \Box \neg$ . Let  $\mathcal{M} = (W, R, V)$  and  $x, y \in W$ 

- $x \Vdash \Box B$  iff  $\forall y.(Rxy \text{ implies } y \Vdash B)$
- $x \Vdash \Diamond B$  iff  $\exists y. (Rxy \text{ and } y \Vdash B)$

Language and Kripke semantics of Int:

$$A ::= p \in \mathsf{At} \mid \bot \mid (A \lor A) \mid (A \land A) \mid (A \supset A)$$

Let  $\mathcal{M} = (W, \leq, V)$  and  $x, x' \in W$ .

- $x \Vdash A \supset B$  iff  $\forall x'. (x \le x' \text{ implies } x' \not\Vdash A \text{ or } x' \Vdash B)$ .
- Monotonic valuation:  $x \le x' \Rightarrow V(x) \subseteq V(x')$ ; Hereditary property (HP): if  $x \Vdash A$  and  $x \le y$  then  $y \Vdash A$

Language and Kripke semantics of ML:

$$A ::= p \in \mathsf{At} \mid \bot \mid (A \to A) \mid \Box A$$

Other connectives  $\rightarrow$ ,  $\land$  are defined as usual and  $\lozenge \equiv \neg \Box \neg$ . Let  $\mathcal{M} = (W, R, V)$  and  $x, y \in W$ 

- $x \Vdash \Box B$  iff  $\forall y.(Rxy \text{ implies } y \Vdash B)$
- $x \Vdash \Diamond B$  iff  $\exists y. (Rxy \text{ and } y \Vdash B)$
- > IML combines both types of language and semantics together

Let  $\mathcal{M} = (W, \leq, R, V)$  be a bi-relational model where

W non-empty set  $\leq$  pre-order

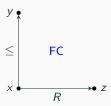
R binary relation V  $W o \mathcal{P}(\mathsf{At})$  with monotonicity

Let  $\mathcal{M} = (W, \leq, R, V)$  be a bi-relational model where

W non-empty set  $\leq$  pre-order

R binary relation V  $W o \mathcal{P}(\mathsf{At})$  with monotonicity

**(FC) forward-confluent**  $\forall y.x \leq y \ \forall z.Rxz \ \exists u.Ryu \ \& \ z \leq u$ 

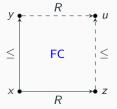


Let  $\mathcal{M} = (W, \leq, R, V)$  be a bi-relational model where

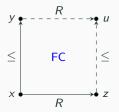
W non-empty set  $\leq$  pre-order

R binary relation V  $W o \mathcal{P}(\mathsf{At})$  with monotonicity

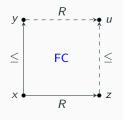
**(FC)** forward-confluent  $\forall y.x \leq y \ \forall z.Rxz \ \exists u.Ryu \ \& \ z \leq u$ 

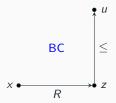


- W non-empty set  $\leq$  pre-order
- R binary relation  $V \longrightarrow \mathcal{P}(At)$  with monotonicity
- **(FC) forward-confluent**  $\forall y.x \leq y \ \forall z.Rxz \ \exists u.Ryu \ \& \ z \leq u$
- **(BC)** backward-confluent  $\forall z.Rxz \ \forall u.z \le u \ \exists y.Ryu \ \& \ x \le y$

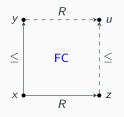


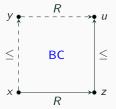
- W non-empty set  $\leq$  pre-order
- R binary relation V  $W o \mathcal{P}(\mathsf{At})$  with monotonicity
- **(FC) forward-confluent**  $\forall y.x \leq y \ \forall z.Rxz \ \exists u.Ryu \ \& \ z \leq u$
- **(BC)** backward-confluent  $\forall z.Rxz \ \forall u.z \le u \ \exists y.Ryu \ \& \ x \le y$





- W non-empty set  $\leq$  pre-order
- R binary relation  $V = W \rightarrow \mathcal{P}(At)$  with monotonicity
- **(FC) forward-confluent**  $\forall y.x \leq y \ \forall z.Rxz \ \exists u.Ryu \ \& \ z \leq u$
- **(BC)** backward-confluent  $\forall z.Rxz \ \forall u.z \leq u \ \exists y.Ryu \ \& \ x \leq y$





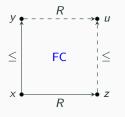
Let  $\mathcal{M} = (W, \leq, R, V)$  be a bi-relational model where

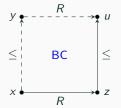
W non-empty set  $\leq$  pre-order

R binary relation  $V = W \rightarrow \mathcal{P}(At)$  with monotonicity

**(FC)** forward-confluent  $\forall y.x \leq y \ \forall z.Rxz \ \exists u.Ryu \ \& \ z \leq u$ 

(BC) backward-confluent  $\forall z.Rxz \ \forall u.z \le u \ \exists y.Ryu \ \& \ x \le y$ 





- interpretation of modalities:
  - global  $\Box$ :  $\mathcal{M}, x \models \Box A$  iff  $\forall y.x \leq y \ \forall z.(Ryz \Rightarrow \mathcal{M}, z \models A)$ ; local  $\Diamond$ :  $\mathcal{M}, x \models \Diamond A$  iff  $\exists y.(Rxy \& \mathcal{M}, y \models A)$ .
- Hereditary property of ◊-formulas is ensured by (FC).

# Intuitionistic K: axiomatization [Fischer-Servi, 1984]

Language of IK:

$$A ::= p \mid \bot \mid \top \mid (A \lor A) \mid (A \land A) \mid (A \supset A) \mid \Box A \mid \Diamond A$$

## Intuitionistic K: axiomatization [Fischer-Servi, 1984]

#### Language of IK:

$$A ::= p \mid \bot \mid \top \mid (A \lor A) \mid (A \land A) \mid (A \supset A) \mid \Box A \mid \Diamond A$$

#### Axioms:

$$\begin{array}{llll} \text{k1.} & \Box(A\supset B)\supset (\Box A\supset \Box B) & (\mathsf{K}_{\Box}) \\ \text{k2.} & \Box(A\supset B)\supset (\Diamond A\supset \Diamond B) & (\mathsf{K}_{\Diamond}) \\ \text{k3.} & \Diamond(A\vee B)\supset \Diamond A\vee \Diamond B & (\mathsf{DP}) \\ \text{k4.} & (\Diamond A\supset \Box B)\supset \Box(A\supset B) & (\mathsf{FS}) \\ \text{k5.} & \Diamond\bot\supset\bot & (\mathsf{N}) \end{array}$$

## Intuitionistic K: axiomatization [Fischer-Servi, 1984]

#### Language of IK:

$$A ::= p \mid \bot \mid \top \mid (A \lor A) \mid (A \land A) \mid (A \supset A) \mid \Box A \mid \Diamond A$$

#### Axioms:

k1. 
$$\Box(A \supset B) \supset (\Box A \supset \Box B)$$
  $(K_{\Box})$   
k2.  $\Box(A \supset B) \supset (\Diamond A \supset \Diamond B)$   $(K_{\Diamond})$   
k3.  $\Diamond(A \lor B) \supset \Diamond A \lor \Diamond B$   $(DP)$   
k4.  $(\Diamond A \supset \Box B) \supset \Box(A \supset B)$   $(FS)$   
k5.  $\Diamond \bot \supset \bot$   $(N)$ 

#### Rules:

$$(MP) \frac{A \qquad A \supset B}{B} \qquad (Nec) \frac{A}{\square A}$$

#### Axiom system for IK:

- 
$$(K_{\square}) \square (A \supset B) \supset (\square A \supset \square B)$$

$$- (\mathsf{K}_{\Diamond}) \ \Box (A \supset B) \supset (\Diamond A \supset \Diamond B)$$

- (MP) (Nec)
- (N) ¬◊⊥
- (DP)  $\Diamond (A \vee B) \supset \Diamond A \vee \Diamond B$
- (FS)  $(\lozenge A \supset \square B) \supset \square (A \supset B)$

Axiom system for LIK [Balbiani et al., 2024b]:

- 
$$(K_{\square}) \square (A \supset B) \supset (\square A \supset \square B)$$

$$- (\mathsf{K}_{\Diamond}) \ \Box (A \supset B) \supset (\Diamond A \supset \Diamond B)$$

- (MP) (Nec)
- (N) ¬◊⊥
- (DP)  $\Diamond (A \vee B) \supset \Diamond A \vee \Diamond B$
- (CD/RV)  $\square$ ( $A \lor B$ )  $\supset \Diamond A \lor \square B$

Axiom system for FIK [Balbiani et al., 2024a]:

- 
$$(K_{\square}) \square (A \supset B) \supset (\square A \supset \square B)$$

$$- (\mathsf{K}_{\Diamond}) \ \Box (A \supset B) \supset (\Diamond A \supset \Diamond B)$$

- (MP) (Nec)
- (N) ¬◊⊥
- (DP)  $\Diamond (A \lor B) \supset \Diamond A \lor \Diamond B$
- (wCD)  $\Box$ ( $A \lor B$ )  $\supset$  (( $\Diamond A \supset \Box B$ )  $\supset \Box B$ ).

#### Axiom system for CCDL:

- 
$$(\mathsf{K}_{\square}) \square (A \supset B) \supset (\square A \supset \square B)$$

- 
$$(K_{\Diamond}) \square (A \supset B) \supset (\Diamond A \supset \Diamond B)$$

- (MP) (Nec)
- (N) ¬◊⊥

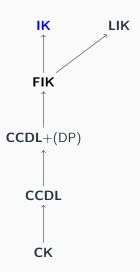
#### Axiom system for CK:

- 
$$(\mathsf{K}_{\square}) \square (A \supset B) \supset (\square A \supset \square B)$$

- 
$$(K_{\Diamond}) \square (A \supset B) \supset (\Diamond A \supset \Diamond B)$$

- (MP) (Nec)

# Hierarchy of several IMLs



## Proof theory in the literature

#### Existing sequent calculi for ${\mbox{IK}}$ and its extensions:

|   | Single-conclusion nested calculi   | [Straßburger, 2013, Galmiche and Salhi, 2010] |
|---|------------------------------------|-----------------------------------------------|
|   | Multi-conclusion nested calculus   | [Kuznets and Straßburger, 2019]               |
|   | Single-conclusion labelled calculi | [Simpson, 1994]                               |
|   | Fully labelled sequent calculi     | [Marin et al., 2021, Girlando et al., 2023]   |
| Ì | Nested calculi with display rules  | [Goré et al., 2010]                           |

## Proof theory in the literature

Existing sequent calculi for **IK** and its extensions:

| Single-conclusion nested calculi   | [Straßburger, 2013, Galmiche and Salhi, 2010] |
|------------------------------------|-----------------------------------------------|
| Multi-conclusion nested calculus   | [Kuznets and Straßburger, 2019]               |
| Single-conclusion labelled calculi | [Simpson, 1994]                               |
| Fully labelled sequent calculi     | [Marin et al., 2021, Girlando et al., 2023]   |
| Nested calculi with display rules  | [Goré et al., 2010]                           |

We seek a "suitable" calculus in which

- all rules are invertible
- terminating proof-search is supported
- a countermodel can be directly extracted from a failed proof

## Proof theory in the literature

Existing sequent calculi for IK and its extensions:

| Single-conclusion nested calculi   | [Straßburger, 2013, Galmiche and Salhi, 2010] |
|------------------------------------|-----------------------------------------------|
| Multi-conclusion nested calculus   | [Kuznets and Straßburger, 2019]               |
| Single-conclusion labelled calculi | [Simpson, 1994]                               |
| Fully labelled sequent calculi     | [Marin et al., 2021, Girlando et al., 2023]   |
| Nested calculi with display rules  | [Goré et al., 2010]                           |

We seek a "suitable" calculus in which

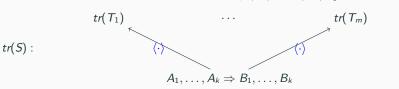
- all rules are invertible
- terminating proof-search is supported
- a countermodel can be directly extracted from a failed proof

In [Balbiani et al., 2024a], a **bi-nested** calculus for **FIK** with these features is provided.

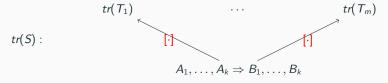
► Can we provide a similar bi-nested calculus for IK?

▶ sequent:  $\Gamma \Rightarrow \Delta$ , pair of multisets of formulas

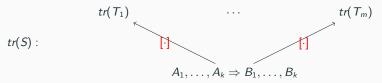
- ▶ sequent:  $\Gamma \Rightarrow \Delta$ , pair of multisets of formulas
- ▶ nested sequent:  $S = A_1, ..., A_k \Rightarrow B_1, ..., B_j, \langle T_1 \rangle, ..., \langle T_m \rangle$  [Fitting, 2014]



- $\blacktriangleright$  sequent:  $\Gamma\Rightarrow\Delta,$  pair of multisets of formulas
- ▶ nested sequent:  $S = A_1, ..., A_k \Rightarrow B_1, ..., B_j, [T_1], ..., [T_m]$ [Brünnler, 2009]



- ▶ sequent:  $\Gamma \Rightarrow \Delta$ , pair of multisets of formulas
- ▶ nested sequent:  $S = A_1, ..., A_k \Rightarrow B_1, ..., B_j, [T_1], ..., [T_m]$  [Brünnler, 2009]



▶ bi-nested sequent:

$$S = A_1, \dots, A_k \Rightarrow B_1, \dots, B_j, \langle T_1 \rangle, \dots, \langle T_m \rangle, [Q_1], \dots, [Q_n]$$

$$tr(T_1) \qquad tr(T_m) \qquad tr(Q_1) \qquad tr(Q_n)$$

$$tr(S):$$

$$A_1, \dots, A_k \Rightarrow B_1, \dots, B_j$$

## Bi-nested sequent calculus

two types of nesting are used, roughly

[·] simulating R, see [Brünnler, 2009, Poggiolesi, 2009]

 $\langle \cdot \rangle$  simulating  $\leq$  ,  $\phantom{a}$  see [Fitting, 2014, Das and Marin, 2023]

e.g.

$$\frac{G\{\Gamma \Rightarrow \Delta, \langle A \Rightarrow B \rangle\}}{G\{\Gamma \Rightarrow \Delta, A \supset B\}} (\supset_R) \quad \frac{G\{\Gamma \Rightarrow \Delta, \Diamond A, [\Sigma \Rightarrow \Pi, A]\}}{G\{\Gamma \Rightarrow \Delta, \Diamond A, [\Sigma \Rightarrow \Pi]\}} (\Diamond_R)$$

## Bi-nested sequent calculus

- two types of nesting are used, roughly
  - [·] simulating R, see [Brünnler, 2009, Poggiolesi, 2009]
  - $\langle \cdot \rangle$  simulating  $\leq$ , see [Fitting, 2014, Das and Marin, 2023]

e.g.

$$\frac{G\{\Gamma\Rightarrow\Delta,\langle A\Rightarrow B\rangle\}}{G\{\Gamma\Rightarrow\Delta,A\supset B\}}\left(\supset_{R}\right)\quad\frac{G\{\Gamma\Rightarrow\Delta,\Diamond A,[\Sigma\Rightarrow\Pi,A]\}}{G\{\Gamma\Rightarrow\Delta,\Diamond A,[\Sigma\Rightarrow\Pi]\}}\left(\Diamond_{R}\right)$$

•  $(\Box_R)$  is global while  $(\Diamond_R)$  is local

$$\frac{-G\{\Gamma\Rightarrow\Delta,\langle\Rightarrow[\Rightarrow A]\rangle\}}{G\{\Gamma\Rightarrow\Delta,\Box A\}}\left(\Box_{R}\right)-\frac{G\{\Gamma\Rightarrow\Delta,\Diamond A,[\Sigma\Rightarrow\Pi,A]\}}{G\{\Gamma\Rightarrow\Delta,\Diamond A,[\Sigma\Rightarrow\Pi]\}}\left(\Diamond_{R}\right)$$

## Bi-nested sequent calculus

two types of nesting are used, roughly

[·] simulating R, see [Brünnler, 2009, Poggiolesi, 2009]

 $\langle \cdot \rangle$  simulating  $\leq$ , see [Fitting, 2014, Das and Marin, 2023]

e.g.

$$\frac{G\{\Gamma\Rightarrow\Delta,\langle A\Rightarrow B\rangle\}}{G\{\Gamma\Rightarrow\Delta,A\supset B\}}\left(\supset_{R}\right)\quad\frac{G\{\Gamma\Rightarrow\Delta,\Diamond A,[\Sigma\Rightarrow\Pi,A]\}}{G\{\Gamma\Rightarrow\Delta,\Diamond A,[\Sigma\Rightarrow\Pi]\}}\left(\Diamond_{R}\right)$$

•  $(\Box_R)$  is global while  $(\Diamond_R)$  is local

$$\frac{-G\{\Gamma\Rightarrow\Delta,\langle\Rightarrow[\Rightarrow A]\rangle\}}{G\{\Gamma\Rightarrow\Delta,\Box A\}}\left(\Box_{R}\right)-\frac{G\{\Gamma\Rightarrow\Delta,\Diamond A,[\Sigma\Rightarrow\Pi,A]\}}{G\{\Gamma\Rightarrow\Delta,\Diamond A,[\Sigma\Rightarrow\Pi]\}}\left(\Diamond_{R}\right)$$

interactive rules characterizing (FC) and (BC)

$$\frac{G\{\Gamma\Rightarrow\Delta,\langle\Sigma\Rightarrow\Pi,[\Lambda\Rightarrow\Theta^*]\rangle,[\Lambda\Rightarrow\Theta]\}}{G\{\Gamma\Rightarrow\Delta,\langle\Sigma\Rightarrow\Pi\rangle,[\Lambda\Rightarrow\Theta]\}} \text{ (inter_fc)}$$
 
$$\frac{G\{\Gamma\Rightarrow\Delta,[\Lambda\Rightarrow\Theta,\langle\Sigma\Rightarrow\Pi\rangle],\langle\Rightarrow[\Sigma\Rightarrow\Pi]\rangle\}}{G\{\Gamma\Rightarrow\Delta,[\Lambda\Rightarrow\Theta,\langle\Sigma\Rightarrow\Pi\rangle]\}} \text{ (inter_bc)}$$

## The bi-nested calculus CIK

## **Example: Proof**

#### **Example**

Axiom (FS):  $(\lozenge p \supset \Box q) \supset \Box (p \supset q)$  is provable in  $C_{lK}$ .

## **Example: Proof**

#### **Example**

Axiom (FS):  $(\lozenge p \supset \Box q) \supset \Box (p \supset q)$  is provable in  $\mathbf{C}_{\mathsf{IK}}$ .

Let 
$$G_1\{\ \}=\Diamond p\supset \Box q\Rightarrow \langle \{\ \} \rangle$$
 and  $G_2\{\ \}=\Diamond p\supset \Box q\Rightarrow [\Rightarrow \langle p\Rightarrow q\rangle], \langle \{\ \} \rangle.$ 

$$\frac{ G_1 \{ G_2 \{ \lozenge p \supset \Box q \Rightarrow \lozenge p, [p \Rightarrow q, p] \} \}}{G_1 \{ G_2 \{ \lozenge p \supset \Box q \Rightarrow \lozenge p, [p \Rightarrow q] \} \}} (\text{id}) } \frac{ G_1 \{ G_2 \{ \Box q \Rightarrow [q, p \Rightarrow q] \} \}}{(\lozenge_L)} \frac{ (\Box_L)}{G_1 \{ G_2 \{ \Box q \Rightarrow [p \Rightarrow q] \} \}} ()_{\Box_L} )}$$

$$\frac{ G_1 \{ G_2 \{ \lozenge p \supset \Box q \Rightarrow [p \Rightarrow q] \} \}}{G_1 \{ \lozenge p \supset \Box q \Rightarrow [p \Rightarrow q] \}, (\Rightarrow [p \Rightarrow q]) \}} (\text{trans}) } \frac{ (\text{Trans}) }{ (\text{inter}_{bc})}$$

$$\frac{ G_1 \{ \lozenge p \supset \Box q \Rightarrow [p \Rightarrow q] \}, (\Rightarrow [p \Rightarrow q]) \}}{ (p \supset \Box q \Rightarrow [p \Rightarrow q]) } ()_{\Box_R} } ()_{\Box_R}$$

$$\frac{ \lozenge p \supset \Box q \Rightarrow (\lozenge p \supset q) }{ (\lozenge p \supset q)} (\Box_R)$$

• simple loop-checking is sufficient

- simple loop-checking is sufficient
- with saturation, we provide a terminating proof-search strategy

- simple loop-checking is sufficient
- with saturation, we provide a terminating proof-search strategy
- an extra annotation system is used for bookkeeping

- simple loop-checking is sufficient
- with saturation, we provide a terminating proof-search strategy
- an extra annotation system is used for bookkeeping
- a saturated sequent with annotations is regarded as a model

- simple loop-checking is sufficient
- with saturation, we provide a terminating proof-search strategy
- an extra annotation system is used for bookkeeping
- a saturated sequent with annotations is regarded as a model

- simple loop-checking is sufficient
- with saturation, we provide a terminating proof-search strategy
- an extra annotation system is used for bookkeeping
- a saturated sequent with annotations is regarded as a model

#### **Termination**

Let A be a formula. Proof-search for the sequent  $\Rightarrow A$  terminates with a finite derivation in which all the leaves are axiomatic or there is one saturated leaf.

- simple loop-checking is sufficient
- with saturation, we provide a terminating proof-search strategy
- an extra annotation system is used for bookkeeping
- a saturated sequent with annotations is regarded as a model

#### **Termination**

Let A be a formula. Proof-search for the sequent  $\Rightarrow A$  terminates with a finite derivation in which all the leaves are axiomatic or there is one saturated leaf.

#### Soundess and completeness

CIK is sound and complete w.r.t. the bi-relational semantics.

▶  $F = \neg \Diamond \neg p \supset \Box p$  is not an **IK**-validity.

▶  $F = \neg \Diamond \neg p \supset \Box p$  is not an **IK**-validity.

| ► F — | $\neg \land \neg n$ | $\neg \sqcap_n$    | ic not  | an II  | K-validity.         |
|-------|---------------------|--------------------|---------|--------|---------------------|
| _ , _ | '\/ ' <b>D</b>      | $\supset \sqcup P$ | 13 1101 | all II | <b>t</b> -vallulty. |

| We run ProofSearch( $F$ ), initializing with $\stackrel{0}{\Rightarrow} F$ .                       | . By backward | applications of | f the |
|----------------------------------------------------------------------------------------------------|---------------|-----------------|-------|
| rules, one branch of the derivation unfolds as $% \left\{ 1,2,\ldots ,2,\ldots ,2,\ldots \right\}$ |               |                 |       |
|                                                                                                    |               |                 |       |
|                                                                                                    |               |                 |       |

| <b>F</b> — | $\neg \Diamond \neg p$ | _ | $\Box_n$   | ic | not | an. | IK. | val  | idia | ь,  |
|------------|------------------------|---|------------|----|-----|-----|-----|------|------|-----|
| r =        | $\neg \lor \neg p$     | ノ | $\sqcup p$ | IS | not | an  | In- | -vai | ıan  | ĽΥ. |

We run ProofSearch(F), initializing with  $\stackrel{0}{\Rightarrow} F$ . By backward applications of the rules, one branch of the derivation unfolds as

 $\stackrel{\circ}{\longrightarrow} F, \langle \neg \lozenge \neg p \xrightarrow{1} \Box p \rangle \qquad (\supset_{R})$ 

▶  $F = \neg \Diamond \neg p \supset \Box p$  is not an **IK**-validity.

$$\frac{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p \rangle} (\supset_{\mathcal{E}})}$$

$$\stackrel{\circ}{\Rightarrow} F$$

▶  $F = \neg \Diamond \neg p \supset \Box p$  is not an **IK**-validity.

$$\frac{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, \langle \stackrel{2}{\Rightarrow} [\stackrel{3}{\Rightarrow} p] \rangle \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p \rangle} (\Box_{R})} \xrightarrow{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p \rangle} (\Box_{R})$$

▶  $F = \neg \Diamond \neg p \supset \Box p$  is not an **IK**-validity.

$$\frac{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, \langle \neg \lozenge \neg p \stackrel{2}{\Rightarrow} [\stackrel{3}{\Rightarrow} p] \rangle \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, \langle \stackrel{2}{\Rightarrow} [\stackrel{3}{\Rightarrow} p] \rangle \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p \rangle} (\Box_{R})} (\Box_{R})$$

$$\frac{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p \rangle} (\supset_{R})$$

▶  $F = \neg \Diamond \neg p \supset \Box p$  is not an **IK**-validity.

$$\frac{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, \langle \neg \lozenge \neg p \stackrel{2}{\Rightarrow} \lozenge \neg p, [\stackrel{3}{\Rightarrow} p] \rangle \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, \langle \neg \lozenge \neg p \stackrel{2}{\Rightarrow} [\stackrel{3}{\Rightarrow} p] \rangle \rangle} \text{ (trans)}}$$

$$\frac{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, (\stackrel{2}{\Rightarrow} [\stackrel{3}{\Rightarrow} p] \rangle \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p \rangle} \text{ ($\Box_R$)}}$$

$$\frac{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p \rangle} \text{ ($\Box_R$)}$$

$$\stackrel{\circ}{\Rightarrow} F = F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p \rangle} \text{ ($\Box_R$)}$$

▶  $F = \neg \Diamond \neg p \supset \Box p$  is not an **IK**-validity.

$$\frac{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, \langle \neg \lozenge \neg p \stackrel{2}{\Rightarrow} \lozenge \neg p, [\stackrel{3}{\Rightarrow} p, \neg p] \rangle \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, \langle \neg \lozenge \neg p \stackrel{2}{\Rightarrow} \lozenge \neg p, [\stackrel{3}{\Rightarrow} p] \rangle \rangle} (\lozenge_R)} (\lozenge_R)$$

$$\frac{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, \langle \neg \lozenge \neg p \stackrel{2}{\Rightarrow} [\stackrel{3}{\Rightarrow} p] \rangle \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, \langle \stackrel{2}{\Rightarrow} [\stackrel{3}{\Rightarrow} p] \rangle \rangle} (\text{trans})$$

$$\frac{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, \lozenge}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p \rangle} (\bigcirc_L)$$

$$\frac{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p \rangle} (\bigcirc_R)$$

▶  $F = \neg \lozenge \neg p \supset \Box p$  is not an **IK**-validity.

$$\frac{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{\downarrow}{\Rightarrow} \Box p, \lozenge \neg p, \langle \neg \lozenge \neg p \stackrel{2}{\Rightarrow} \lozenge \neg p, \stackrel{3}{\Rightarrow} p, \neg p, \langle p \stackrel{4}{\Rightarrow} \bot) \rangle \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{\downarrow}{\Rightarrow} \Box p, \lozenge \neg p, \langle \neg \lozenge \neg p \stackrel{2}{\Rightarrow} \lozenge \neg p, \stackrel{3}{\Rightarrow} p, \neg p \rangle \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{\downarrow}{\Rightarrow} \Box p, \lozenge \neg p, \langle \neg \lozenge \neg p \stackrel{2}{\Rightarrow} \lozenge \neg p, \stackrel{3}{\Rightarrow} p \rangle \rangle \rangle} (\lozenge R)} (\lozenge R)$$

$$\frac{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{\downarrow}{\Rightarrow} \Box p, \lozenge \neg p, \langle \neg \lozenge \neg p \stackrel{2}{\Rightarrow} \stackrel{3}{\Rightarrow} p \rangle \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{\downarrow}{\Rightarrow} \Box p, \lozenge \neg p, \stackrel{2}{\Rightarrow} \stackrel{3}{\Rightarrow} p \rangle \rangle} (\square_R)$$

$$\frac{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{\downarrow}{\Rightarrow} \Box p, \lozenge \neg p, \stackrel{2}{\Rightarrow} \stackrel{3}{\Rightarrow} p \rangle \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{\downarrow}{\Rightarrow} \Box p, \lozenge \neg p, \stackrel{2}{\Rightarrow} p \rangle} (\square_L)$$

$$\frac{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{\downarrow}{\Rightarrow} \Box p, \lozenge \neg p, }{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{\downarrow}{\Rightarrow} \Box p, } (\square_R)$$

▶  $F = \neg \lozenge \neg p \supset \Box p$  is not an **IK**-validity.

$$\frac{(4,6); \stackrel{\circ}{\rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, \langle \neg \lozenge \neg p \stackrel{2}{\Rightarrow} \lozenge \neg p, [\stackrel{3}{\Rightarrow} p, \neg p, \langle p \stackrel{4}{\Rightarrow} \bot]], \langle \stackrel{5}{\Rightarrow} [p \stackrel{6}{\Rightarrow} \bot] \rangle \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, \langle \neg \lozenge \neg p \stackrel{2}{\Rightarrow} \lozenge \neg p, [\stackrel{3}{\Rightarrow} p, \neg p, \langle p \stackrel{4}{\Rightarrow} \bot]] \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, \langle \neg \lozenge \neg p \stackrel{2}{\Rightarrow} \lozenge \neg p, [\stackrel{3}{\Rightarrow} p, \neg p] \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, \langle \neg \lozenge \neg p \stackrel{2}{\Rightarrow} \lozenge \neg p, [\stackrel{3}{\Rightarrow} p] \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, \langle \neg \lozenge \neg p \stackrel{2}{\Rightarrow} [\stackrel{3}{\Rightarrow} p] \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, \langle \neg \lozenge \neg p \stackrel{2}{\Rightarrow} [\stackrel{3}{\Rightarrow} p] \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, \langle \neg \lozenge \neg p, (\neg \lozenge \neg p) \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, (\neg \lozenge \neg p) \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, (\neg \lozenge \neg p) \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, (\neg \lozenge \neg p) \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, (\neg \lozenge \neg p) \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p, (\neg \lozenge \neg p) \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p, (\neg \lozenge \neg p) \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p, (\neg \lozenge \neg p) \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p, (\neg \lozenge \neg p, (\neg \lozenge \neg p) \rangle}{\stackrel{\circ}{\Rightarrow} F, \langle \neg \lozenge \neg p, (\neg \lozenge \neg$$

▶  $F = \neg \lozenge \neg p \supset \Box p$  is not an **IK**-validity.

$$\frac{(4,6); \stackrel{\triangle}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, \langle \neg \lozenge \neg p \stackrel{2}{\Rightarrow} \lozenge \neg p, [\stackrel{3}{\Rightarrow} p, \neg p, \langle p \stackrel{4}{\Rightarrow} \bot \rangle], \langle \neg \lozenge \neg p \stackrel{5}{\Rightarrow} \lozenge \neg p, [p \stackrel{6}{\Rightarrow} \neg p, \bot] \rangle \rangle}{(4,6); \stackrel{\triangle}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, \langle \neg \lozenge \neg p \stackrel{2}{\Rightarrow} \lozenge \neg p, [\stackrel{3}{\Rightarrow} p, \neg p, \langle p \stackrel{4}{\Rightarrow} \bot \rangle], \langle \stackrel{5}{\Rightarrow} [p \stackrel{6}{\Rightarrow} \bot] \rangle \rangle} (\text{inter}_{bc})$$

$$\frac{\stackrel{\triangle}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, \langle \neg \lozenge \neg p \stackrel{2}{\Rightarrow} \lozenge \neg p, [\stackrel{3}{\Rightarrow} p, \neg p, \langle p \stackrel{4}{\Rightarrow} \bot \rangle] \rangle \rangle}{(\bigcirc R)} (\bigcirc R)$$

$$\frac{\stackrel{\triangle}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, \langle \neg \lozenge \neg p \stackrel{2}{\Rightarrow} \lozenge \neg p, [\stackrel{3}{\Rightarrow} p, \neg p] \rangle \rangle}{(\bigcirc \lozenge R)} (\bigcirc R)$$

$$\frac{\stackrel{\triangle}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, \langle \neg \lozenge \neg p \stackrel{2}{\Rightarrow} \lozenge \neg p, [\stackrel{3}{\Rightarrow} p] \rangle \rangle}{(\square R)} (\text{trans})$$

$$\frac{\stackrel{\triangle}{\Rightarrow} F, \langle \neg \lozenge \neg p \stackrel{1}{\Rightarrow} \Box p, \lozenge \neg p, (\stackrel{1}{\Rightarrow} \square p) \rangle}{(\bigcirc R)} (\bigcirc R)$$

▶  $F = \neg \lozenge \neg p \supset \Box p$  is not an **IK**-validity.

We run ProofSearch(F), initializing with  $\stackrel{0}{\Rightarrow} F$ . By backward applications of the rules, one branch of the derivation unfolds as

We obtain a global-saturated ann-sequent  $S_0 = (4,6)$ ;  $\stackrel{0}{\Rightarrow} F, \langle S_1 \rangle$  where  $S_1$  is:  $\neg \Diamond \neg p \stackrel{1}{\Rightarrow} \Diamond \neg p, \Box p, \langle \neg \Diamond \neg p \stackrel{2}{\Rightarrow} \Diamond \neg p, [\stackrel{3}{\Rightarrow} p, \neg p, \langle p \stackrel{4}{\Rightarrow} \bot \rangle], \langle \neg \Diamond \neg p \stackrel{5}{\Rightarrow} \Diamond \neg p, [p \stackrel{6}{\Rightarrow} \neg p, \bot] \rangle \rangle$ .

$$S_0 = (4,6); \stackrel{0}{\Rightarrow} \neg \lozenge \neg p \supset \Box p, \langle S_1 \rangle$$

where  $S_1$  is:

$$\neg \lozenge \neg p \overset{1}{\Rightarrow} \lozenge \neg p, \Box p, \langle \neg \lozenge \neg p \overset{2}{\Rightarrow} \lozenge \neg p, [\overset{3}{\Rightarrow} p, \neg p, \langle p \overset{4}{\Rightarrow} \bot \rangle], \langle \neg \lozenge \neg p \overset{5}{\Rightarrow} \lozenge \neg p, [p \overset{6}{\Rightarrow} \neg p, \bot] \rangle \rangle.$$

$$S_0 = (4,6); \stackrel{0}{\Rightarrow} \neg \lozenge \neg p \supset \Box p, \langle S_1 \rangle$$

where  $S_1$  is:

$$\neg \lozenge \neg p \stackrel{1}{\Rightarrow} \lozenge \neg p, \Box p, \langle \neg \lozenge \neg p \stackrel{2}{\Rightarrow} \lozenge \neg p, [\stackrel{3}{\Rightarrow} p, \neg p, \langle p \stackrel{4}{\Rightarrow} \bot \rangle], \langle \neg \lozenge \neg p \stackrel{5}{\Rightarrow} \lozenge \neg p, [p \stackrel{6}{\Rightarrow} \neg p, \bot] \rangle \rangle.$$
 further let

$$S_{2} = \neg \lozenge \neg p \stackrel{?}{\Rightarrow} \lozenge \neg p, [\stackrel{3}{\Rightarrow} p, \neg p, \langle p \stackrel{4}{\Rightarrow} \bot \rangle], \langle \neg \lozenge \neg p \stackrel{5}{\Rightarrow} \lozenge \neg p, [p \stackrel{6}{\Rightarrow} \neg p, \bot] \rangle$$

$$S_{3} = \stackrel{3}{\Rightarrow} p, \neg p, \langle p \stackrel{4}{\Rightarrow} \bot \rangle$$

$$S_{4} = p \stackrel{4}{\Rightarrow} \bot$$

$$S_{5} = \neg \lozenge \neg p \stackrel{5}{\Rightarrow} \lozenge \neg p, [p \stackrel{6}{\Rightarrow} \neg p, \bot]$$

$$S_{6} = p \stackrel{6}{\Rightarrow} \neg p, \bot$$

$$S_0 = (4,6); \stackrel{0}{\Rightarrow} \neg \lozenge \neg p \supset \Box p, \langle S_1 \rangle$$

where  $S_1$  is:

$$\neg \lozenge \neg \rho \xrightarrow{5} \lozenge \neg \rho, \Box \rho, \langle \neg \lozenge \neg \rho \xrightarrow{2} \lozenge \neg \rho, [\overset{3}{\Rightarrow} \rho, \neg \rho, \langle \rho \xrightarrow{4} \bot \rangle], \langle \neg \lozenge \neg \rho \xrightarrow{5} \lozenge \neg \rho, [\rho \xrightarrow{6} \neg \rho, \bot] \rangle \rangle.$$

further let

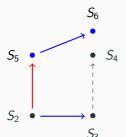
$$S_{2} = \neg \lozenge \neg p \stackrel{2}{\Rightarrow} \lozenge \neg p, [\stackrel{3}{\Rightarrow} p, \neg p, \langle p \stackrel{4}{\Rightarrow} \bot \rangle], \langle \neg \lozenge \neg p \stackrel{5}{\Rightarrow} \lozenge \neg p, [p \stackrel{6}{\Rightarrow} \neg p, \bot] \rangle$$

$$S_{3} = \stackrel{3}{\Rightarrow} p, \neg p, \langle p \stackrel{4}{\Rightarrow} \bot \rangle$$

$$S_{4} = p \stackrel{4}{\Rightarrow} \bot$$

$$S_{5} = \neg \lozenge \neg p \stackrel{5}{\Rightarrow} \lozenge \neg p, [p \stackrel{6}{\Rightarrow} \neg p, \bot]$$

$$S_{6} = p \stackrel{6}{\Rightarrow} \neg p, \bot$$



$$S_0 = (4,6); \stackrel{0}{\Rightarrow} \neg \lozenge \neg p \supset \Box p, \langle S_1 \rangle$$

where  $S_1$  is:

$$\neg \lozenge \neg \rho \xrightarrow{5} \lozenge \neg \rho, \Box \rho, \langle \neg \lozenge \neg \rho \xrightarrow{2} \lozenge \neg \rho, [\overset{3}{\Rightarrow} \rho, \neg \rho, \langle \rho \xrightarrow{4} \bot \rangle], \langle \neg \lozenge \neg \rho \xrightarrow{5} \lozenge \neg \rho, [\rho \xrightarrow{6} \neg \rho, \bot] \rangle \rangle.$$

further let

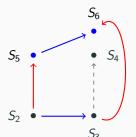
$$S_{2} = \neg \lozenge \neg p \stackrel{2}{\Rightarrow} \lozenge \neg p, [\stackrel{3}{\Rightarrow} p, \neg p, \langle p \stackrel{4}{\Rightarrow} \bot \rangle], \langle \neg \lozenge \neg p \stackrel{5}{\Rightarrow} \lozenge \neg p, [p \stackrel{6}{\Rightarrow} \neg p, \bot] \rangle$$

$$S_{3} = \stackrel{3}{\Rightarrow} p, \neg p, \langle p \stackrel{4}{\Rightarrow} \bot \rangle$$

$$S_{4} = p \stackrel{4}{\Rightarrow} \bot$$

$$S_{5} = \neg \lozenge \neg p \stackrel{5}{\Rightarrow} \lozenge \neg p, [p \stackrel{6}{\Rightarrow} \neg p, \bot]$$

$$S_{6} = p \stackrel{6}{\Rightarrow} \neg p, \bot$$



$$S_0 = (4,6); \stackrel{0}{\Rightarrow} \neg \lozenge \neg p \supset \Box p, \langle S_1 \rangle$$

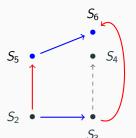
where  $S_1$  is:

$$\neg \lozenge \neg p \stackrel{1}{\Rightarrow} \lozenge \neg p, \Box p, \langle \neg \lozenge \neg p \stackrel{2}{\Rightarrow} \lozenge \neg p, [\stackrel{3}{\Rightarrow} p, \neg p, \langle p \stackrel{4}{\Rightarrow} \bot \rangle], \langle \neg \lozenge \neg p \stackrel{5}{\Rightarrow} \lozenge \neg p, [p \stackrel{6}{\Rightarrow} \neg p, \bot] \rangle \rangle.$$

further let

$$\begin{split} S_2 &= \neg \lozenge \neg p \overset{2}{\Rightarrow} \lozenge \neg p, [\overset{3}{\Rightarrow} p, \neg p, \langle p \overset{4}{\Rightarrow} \bot \rangle], \langle \neg \lozenge \neg p \overset{5}{\Rightarrow} \lozenge \neg p, [p \overset{6}{\Rightarrow} \neg p, \bot] \rangle \\ S_3 &= \overset{3}{\Rightarrow} p, \neg p, \langle p \overset{4}{\Rightarrow} \bot \rangle \\ S_5 &= \neg \lozenge \neg p \overset{5}{\Rightarrow} \lozenge \neg p, [p \overset{6}{\Rightarrow} \neg p, \bot] \end{split}$$

$$S_4 &= p \overset{4}{\Rightarrow} \bot \\ S_6 &= p \overset{6}{\Rightarrow} \neg p, \bot$$



- $W = \{x_{S_0}, x_{S_1}, x_{S_2}, x_{S_3}, x_{S_5}, x_{S_6}\}$
- $x_{S_0} \le x_{S_1} \le x_{S_2} \le x_{S_5}, x_{S_3} \le x_{S_6}$  (plus reflexivity)
- $Rx_{S_2}x_{S_3}, Rx_{S_5}x_{S_6}$
- $V(x_{S_i}) = \emptyset$  for  $i \neq 6$ ;  $V(x_{S_6}) = \{p\}$

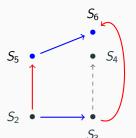
$$S_0 = (4,6); \stackrel{0}{\Rightarrow} \neg \lozenge \neg p \supset \Box p, \langle S_1 \rangle$$

where  $S_1$  is:

$$\neg \lozenge \neg p \stackrel{1}{\Rightarrow} \lozenge \neg p, \Box p, \langle \neg \lozenge \neg p \stackrel{2}{\Rightarrow} \lozenge \neg p, [\stackrel{3}{\Rightarrow} p, \neg p, \langle p \stackrel{4}{\Rightarrow} \bot \rangle], \langle \neg \lozenge \neg p \stackrel{5}{\Rightarrow} \lozenge \neg p, [p \stackrel{6}{\Rightarrow} \neg p, \bot] \rangle \rangle.$$

further let

$$\begin{split} S_2 &= \neg \lozenge \neg p \overset{2}{\Rightarrow} \lozenge \neg p, [\overset{3}{\Rightarrow} p, \neg p, \langle p \overset{4}{\Rightarrow} \bot \rangle], \langle \neg \lozenge \neg p \overset{5}{\Rightarrow} \lozenge \neg p, [p \overset{6}{\Rightarrow} \neg p, \bot] \rangle \\ S_3 &= \overset{3}{\Rightarrow} p, \neg p, \langle p \overset{4}{\Rightarrow} \bot \rangle \\ S_5 &= \neg \lozenge \neg p \overset{5}{\Rightarrow} \lozenge \neg p, [p \overset{6}{\Rightarrow} \neg p, \bot] \end{split}$$



- $W = \{x_{S_0}, x_{S_1}, x_{S_2}, x_{S_3}, x_{S_5}, x_{S_6}\}$
- $x_{S_0} < x_{S_1} < x_{S_2} < x_{S_6}, x_{S_2} < x_{S_6}$  (plus reflexivity)
- $Rx_{S_2}x_{S_3}, Rx_{S_5}x_{S_6}$
- $V(x_{S_i}) = \emptyset$  for  $i \neq 6$ ;  $V(x_{S_6}) = \{p\}$

We can verify  $x_{S_0} \nVdash \neg \Diamond \neg p \supset \Box p$ 

To sum up, the bi-nested  $\boldsymbol{C}_{IK}$  has the following properties:

all rules are invertible

To sum up, the bi-nested  $\boldsymbol{C}_{IK}$  has the following properties:

- all rules are invertible
- modularity

To sum up, the bi-nested  $C_{IK}$  has the following properties:

- all rules are invertible
- modularity
- sound and complete with bi-relational semantics

To sum up, the bi-nested  $C_{IK}$  has the following properties:

- all rules are invertible
- modularity
- sound and complete with bi-relational semantics
- terminating proof-search

To sum up, the bi-nested  $\boldsymbol{C}_{I\boldsymbol{K}}$  has the following properties:

- all rules are invertible
- modularity
- sound and complete with bi-relational semantics
- terminating proof-search
- direct countermodel extraction from the decision procedure

To sum up, the bi-nested  $C_{IK}$  has the following properties:

- all rules are invertible
- modularity
- sound and complete with bi-relational semantics
- terminating proof-search
- direct countermodel extraction from the decision procedure
- bi-directional simulation with fully labelled calculus

To sum up, the bi-nested  $C_{IK}$  has the following properties:

- all rules are invertible
- modularity
- sound and complete with bi-relational semantics
- terminating proof-search
- direct countermodel extraction from the decision procedure
- bi-directional simulation with fully labelled calculus

To sum up, the bi-nested  $C_{IK}$  has the following properties:

- all rules are invertible
- modularity
- sound and complete with bi-relational semantics
- terminating proof-search
- direct countermodel extraction from the decision procedure
- bi-directional simulation with fully labelled calculus

Topics for further research:

bi-nested calculi for extensions of IK, e.g. IS4

To sum up, the bi-nested  $C_{IK}$  has the following properties:

- all rules are invertible
- modularity
- sound and complete with bi-relational semantics
- terminating proof-search
- direct countermodel extraction from the decision procedure
- bi-directional simulation with fully labelled calculus

## Topics for further research:

- bi-nested calculi for extensions of IK, e.g. IS4
- complexity of decision problem and how to make the calculus more efficient

To sum up, the bi-nested  $C_{IK}$  has the following properties:

- all rules are invertible
- modularity
- sound and complete with bi-relational semantics
- terminating proof-search
- direct countermodel extraction from the decision procedure
- bi-directional simulation with fully labelled calculus

## Topics for further research:

- bi-nested calculi for extensions of IK, e.g. IS4
- complexity of decision problem and how to make the calculus more efficient
- more IML variants defined by other frame conditions

To sum up, the bi-nested  $C_{IK}$  has the following properties:

- all rules are invertible
- modularity
- sound and complete with bi-relational semantics
- terminating proof-search
- direct countermodel extraction from the decision procedure
- bi-directional simulation with fully labelled calculus

## Topics for further research:

- bi-nested calculi for extensions of IK, e.g. IS4
- complexity of decision problem and how to make the calculus more efficient
- more IML variants defined by other frame conditions

Thanks for your attention!

#### References i



Balbiani, P., Gao, H., Gencer, c., and Olivetti, N. (2024a).

A Natural Intuitionistic Modal Logic: Axiomatization and Bi-Nested Calculus. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024), volume 288 of Leibniz International Proceedings in Informatics (LIPIcs), pages 13:1–13:21.



Balbiani, P., Gao, H., Gencer, Ç., and Olivetti, N. (2024b).

Local intuitionistic modal logics and their calculi.

In International Joint Conference on Automated Reasoning, pages 78–96. Springer.



Bellin, G., De Paiva, V., and Ritter, E. (2001).

Extended curry-howard correspondence for a basic constructive modal logic. In *Proceedings of methods for modalities*, volume 2.



Brünnler, K. (2009).

Deep sequent systems for modal logic.

Arch. Math. Log., 48(6):551-577.

## References ii



Das, A. and Marin, S. (2023).

On intuitionistic diamonds (and lack thereof).

In Ramanayake, R. and Urban, J., editors, *Automated Reasoning with Analytic Tableaux and Related Methods - 32nd International Conference, TABLEAUX 2023*, volume 14278 of *Lecture Notes in Computer Science*, pages 283–301. Springer.



Fischer-Servi, G. (1984).

Axiomatizations for some intuitionistic modal logics.

Rendiconti del Seminario Matematico Università e Politecnico di Torino, 42.



Fitch, F. B. (1948).

Intuitionistic modal logic with quantifiers.

Portugaliae mathematica, 7(2):113-118.



Fitting, M. (2014).

Nested sequents for intuitionistic logics.

Notre Dame J. Formal Log., 55(1):41-61.

## References iii



Galmiche, D. and Salhi, Y. (2010).

Label-free natural deduction systems for intuitionistic and classical modal logics.

Journal of Applied Non-Classical Logics, 20(4):373–421.



Girlando, M., Kuznets, R., Marin, S., Morales, M., and Straßburger, L. (2023). Intuitionistic S4 is decidable.

In 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–13.



Goré, R., Postniece, L., and Tiu, A. (2010).

Cut-elimination and proof search for bi-intuitionistic tense logic.

arXiv preprint arXiv:1006.4793.



Kuznets, R. and Straßburger, L. (2019).

Maehara-style modal nested calculi.

Archive for Mathematical Logic, 58(3):359–385.



Marin, S., Morales, M., and Straßburger, L. (2021).

A fully labelled proof system for intuitionistic modal logics.

J. Log. Comput., 31(3):998-1022.

## References iv



Poggiolesi, F. (2009).

The method of tree-hypersequents for modal propositional logic.

In Towards Mathematical Philosophy: Papers from the Studia Logica conference Trends in Logic IV, pages 31–51. Springer.



Prawitz, D. (1965).

Natural Deduction: A Proof-Theoretical Study.
Dover Publications, Mineola, N.Y.



Simpson, A. K. (1994).

The proof theory and semantics of intuitionistic modal logic.

Ph.D. Thesis, University of Edinburgh.



Straßburger, L. (2013).

Cut elimination in nested sequents for intuitionistic modal logics.

In FOSSACS 2013, pages 209-224. Springer.



Wijesekera, D. (1990).

Constructive modal logics I.

Ann. Pure Appl. Log., 50(3):271-301.



# Intuitionistic K: Proofs and Countermodels

Han Gao<sup>†</sup>, Marianna Girlando\*, Nicola Olivetti<sup>†</sup>

†LIS, Aix-Marseille Université, CNRS \*ILLC, University of Amsterdam

 $8^{\rm th}$  Sep. 2025 @ CIRM, Luminy Synthetic mathematics, logic-affine computation and efficient proof systems