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Summary

We will see:

» Constructive Noetherian definitions;

» Constructive well quasi-orders and their relations.
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Classical logic := Excluded Middle (LEM) + Axiom of Choice (AC).

Classical Noetherianity for Rings

o FBP (Finite Basis Property): every ideal is finitely generated,;

o ACC: every ascending chain of ideals stabilizes

Iogllglgg... = Eln:/,,: n+1 = Inpt2 = ...

o Classically: FBP < ACC.

V.

Problem:
FBP and ACC are not constructively meaningful!

E.g. the 2 element field 5 is neither constructively FBP nor ACC.
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Toward a constructive ACC

o ACC: every ascending chain of ideals stabilizes

hchChC... = dn:lh=lhp=lh=..;
o ACC': every ascending chain of finitely generated ideals stabilizes
hChChC... = dn:lh=lhy1=lhi2=...;
o ACCy: every ascending chain of ideals stalls
hCh<ChC... = 3n:l=ly1;

° ACCSg: every ascending chain of finitely generated ideals stalls
/ogllglzg :>E|n:/n:,,+1;

ACC: is not constructive, e.g. Fy;

ACC®: is not constructive, e.g. by Halting problem for Turing machines;
ACCq: is not constructive, e.g. by topological models of intuitionistic logic;
ACCSg: is constructive! as discovered by Richman and Seidenberg;

Notation: RS-Noetherian:=ACC/ (d’aprés Richman and Seidenberg).
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Ascending chain conditions, relations

No other implications*

*Except maybe AcCcg — ACCT®
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Auxiliary Properties

Let (E, <) be a partial order with x<y =x<y A x # y:
o H C E is hereditary if Vx({y |y < x} € H= x€ H);
o E is hereditary well-founded, hwf, if HC E hereditary = H=E;,
o E is well ordered if it is hereditary well-founded and linear.

Ascending trees (Richman'03)

An ascending tree in E is a family (x;)ie; C E where
o [ is a tree;
o i <j = X < X.

An ascending tree stalls if 3i<j : x;j = x;.
£

Inductive definition of “P bars ¢”

For a predicate P on ascending finite lists on E, we define P|o:
o if P(c) then P|o;
o if Plox for all x>0, then Plo.
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A partial order (E,<) is

o RS-Noetherian if for e < e; < ... thereis n with e,=ep11;
o ML-Noetherian if the reverse order (E, >) is hwf;

o strongly Noetherian if there is a well-order W and a strictly
descending map ¢: E — W, ie. e < f = p(e) > ¢(f);

o tree Noetherian if every ascending tree in E stalls;

o inductively Noetherian if Stall | [], where
Stall(c)="0 is an ascending finite list with repeated terms".

Def: given a ring R, Z¢(R) is the set of finitely generated ideals of R.
Def: a ring R is * Noetherian if (Z¢(R), C) is * Noetherian.

Constructive implications for a decidable poset (E, <)

strong ind tree RS

ML
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Quasi-order

A qo (Q,<) is a set Q with a transitive and reflexive relation <.

op<qg=p<gAgLp

pLanqsp;
P<qgAqg<p.

opJ_q
op~gq

V.

Auxiliary definitions

For every qo (Q, <):
o the closure of BC Q is 1B :={qe Q|3beB b<q};

o B is closed if B=1B and finitely generated if B={{by,...

7bn};
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Basic definitions for quasi-orders

Quasi-order

A qo (Q,<) is a set Q with a transitive and reflexive relation <.

op<qg=p<gAgLp

spla=pLagrqgLp
ep~qg=ps<qgAgsp. )

Auxiliary definitions

For every qo (Q, <):
o the closure of BC Q is 1B :={qe Q|3beB b<q};
o B is closed if B=1B and finitely generated if B={{bs,..., by};

o a sequence (gx)k in Q is a total function from N to Q;

e an antichain is a sequence (qx)k such that g; L q; if i # j;

e an extension of (Q,<) is a qo < on Q extending <, i.e.,
p<qg=p=<qgandpxqgAqgsp=>p~q.

\.

v =
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Well quasi-orders definitions

Aqo (Q,X)is
o well-founded if for g1 > g» > ... there is n such that g,=qn+1;
o wqo if for any sequence (qk)x in @ there exist i <j with g;<g;;

o wqo(set) if every sequence (gx)x in Q has an infinite ascending
subsequence: there are kg <ky < ... such that g, <qx, < ...;

o wqo(anti) if it is well-founded and every antichain is finite;

° wqo(ext) if every linear extension of Q is well-founded;
qo(fbp) if every closed subset is finitely generated,;

° o(acc) if the set of closed subsets is Noetherian;
qo(

*) if the set of finitely generated closed subsets is *Noetherian.

Remark: all the wqo definitions are classically equivalent.
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The conditions wqo(set), wqo(fbp) and wqo(acc) are not

constructively meaningful. )

Implications between constructive wqo definitions

wqo(anti)

S

wqo(str) — wqgo(ML) — wqo(RS) — wqo

N

wgqo(ext)

A\

A closure property

Let P any of the properties wqo, wqo(anti), . ..except wqo(ext).
If (Q, <) has property P and PC Q, then (P, <) has property P.
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