
dmi.png

Introduction Noetherianity Well quasi-orders Conclusion

A Constructive Picture of
Noetherianity and Well Quasi-Orders

Gabriele Buriola1, Peter Schuster1, Ingo Blechschmidt2

1University of Verona, Italy
2University of Augsburg, Germany

11/09/2025

Synthetic mathematics, logic-affine computation
and efficient proof systems



dmi.png

Introduction Noetherianity Well quasi-orders Conclusion

Summary

We will see:

Constructive Noetherian definitions;

Constructive well quasi-orders and their relations.
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Ascending chain condition, classically

Classical logic := Excluded Middle (LEM) + Axiom of Choice (AC).

Classical Noetherianity for Rings

FBP (Finite Basis Property): every ideal is finitely generated;
ACC: every ascending chain of ideals stabilizes

I0 ⊆ I1 ⊆ I2 ⊆ . . . ⇒ ∃n : In = In+1 = In+2 = . . . ;

Classically: FBP ↔ ACC.

Problem:
FBP and ACC are not constructively meaningful!

E.g. the 2 element field F2 is neither constructively FBP nor ACC.
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Ascending chain conditions, constructively

Toward a constructive ACC

ACC: every ascending chain of ideals stabilizes
I0 ⊆ I1 ⊆ I2 ⊆ . . . ⇒ ∃n : In = In+1 = In+2 = . . . ;

ACCfg : every ascending chain of finitely generated ideals stabilizes
I0 ⊆ I1 ⊆ I2 ⊆ . . . ⇒ ∃n : In = In+1 = In+2 = . . . ;

ACC0: every ascending chain of ideals stalls
I0 ⊆ I1 ⊆ I2 ⊆ . . . ⇒ ∃n : In = In+1;

ACCfg
0 : every ascending chain of finitely generated ideals stalls

I0 ⊆ I1 ⊆ I2 ⊆ . . . ⇒ ∃n : In = In+1;

ACC: is not constructive, e.g. F2;
ACCfg : is not constructive, e.g. by Halting problem for Turing machines;
ACC0: is not constructive, e.g. by topological models of intuitionistic logic;
ACCfg

0 : is constructive! as discovered by Richman and Seidenberg;
Notation: RS-Noetherian:=ACCfg

0 (d’après Richman and Seidenberg).
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Auxiliary Properties
Let (E ,⩽) be a partial order with x <y ≡ x ⩽y ∧ x ̸= y :
Hereditary conditions

H ⊆ E is hereditary if ∀x({y | y < x} ⊆ H ⇒ x ∈H);
E is hereditary well-founded, hwf, if H ⊆E hereditary ⇒ H =E ;
E is well ordered if it is hereditary well-founded and linear.

Ascending trees (Richman’03)
An ascending tree in E is a family (xi)i∈I ⊆ E where

I is a tree;
i < j ⇒ xi ⩽ xj .

An ascending tree stalls if ∃ i < j : xi = xj .

Inductive definition of “P bars σ”
For a predicate P on ascending finite lists on E , we define P|σ:

if P(σ) then P|σ;
if P|σx for all x ⩾σ, then P|σ.
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Intuitionistic Noetherian properties and their relations

A partial order (E ,⩽) is
RS-Noetherian if for e1 ⩽ e2 ⩽ . . . there is n with en =en+1;
ML-Noetherian if the reverse order (E ,⩾) is hwf;
strongly Noetherian if there is a well-order W and a strictly
descending map φ : E → W , i.e. e < f ⇒ φ(e) > φ(f );
tree Noetherian if every ascending tree in E stalls;
inductively Noetherian if Stall | [], where
Stall(σ)=“σ is an ascending finite list with repeated terms”.

Def: given a ring R, If (R) is the set of finitely generated ideals of R.
Def: a ring R is * Noetherian if (If (R), ⊆) is * Noetherian.

Constructive implications for a decidable poset (E ,⩽)

tree RSindstrong

ML
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Basic definitions for quasi-orders
Quasi-order
A qo (Q,⩽) is a set Q with a transitive and reflexive relation ⩽.

Notation
p < q ≡ p ⩽ q ∧ q ⩽̸ p;
p ⊥ q ≡ p ⩽̸ q ∧ q ⩽̸ p;
p ∼ q ≡ p ⩽ q ∧ q ⩽ p.

Auxiliary definitions
For every qo (Q,⩽):

the closure of B ⊆ Q is ↑B := {q ∈Q | ∃b ∈B b⩽q};
B is closed if B=↑B and finitely generated if B=↑{b1, . . . , bn};
a sequence (qk)k in Q is a total function from N to Q;
an antichain is a sequence (qk)k such that qi ⊥ qj if i ̸= j ;
an extension of (Q,⩽) is a qo ≼ on Q extending ⩽, i.e.,
p ⩽ q ⇒ p ≼ q and p ≼ q ∧ q ≼ p ⇒ p ∼ q.
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Well quasi-orders definitions

A qo (Q,⩽) is

well-founded if for q1 ⩾ q2 ⩾ . . . there is n such that qn =qn+1;
wqo if for any sequence (qk)k in Q there exist i < j with qi ⩽qj ;
wqo(set) if every sequence (qk)k in Q has an infinite ascending
subsequence: there are k0 <k1 < . . . such that qk0 ⩽qk1 ⩽ . . . ;
wqo(anti) if it is well-founded and every antichain is finite;
wqo(ext) if every linear extension of Q is well-founded;
wqo(fbp) if every closed subset is finitely generated;
wqo(acc) if the set of closed subsets is Noetherian;
wqo(*) if the set of finitely generated closed subsets is *Noetherian.

Remark: all the wqo definitions are classically equivalent.
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Theorem
The conditions wqo(set), wqo(fbp) and wqo(acc) are not
constructively meaningful.

Implications between constructive wqo definitions
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A closure property
Let P any of the properties wqo, wqo(anti), . . . except wqo(ext).
If (Q,⩽) has property P and P ⊆Q, then (P,⩽) has property P.
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Well-founded vs. hereditarily well-founded
Classically equivalent, but not constructively.

Reverse implications
Which of the following implications can be reversed?

strongly Noetherian ⇒ ML-Noetherian;
wqo(RS) ⇒ wqo;
wqo ⇒ wqo(anti);
. . .

For now, RS-Noetherian ̸⇒ ML-Noetherian by A. Blass.

Further closure properties
Is wqo(ext) closed under subset?
If P and Q have property P, does

P ∪̇ Q constructively have property P?
P×Q constructively have property P?
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