A Constructive Picture of Noetherianity and Well Quasi-Orders

Gabriele Buriola₁, Peter Schuster₁, Ingo Blechschmidt₂

¹University of Verona, Italy ²University of Augsburg, Germany

11/09/2025

Synthetic mathematics, logic-affine computation and efficient proof systems

Summary

We will see:

- Constructive Noetherian definitions;
- Constructive well quasi-orders and their relations.

Classical logic := Excluded Middle (LEM) + Axiom of Choice (AC).

Classical Noetherianity for Rings

- FBP (Finite Basis Property): every ideal is finitely generated;
- ACC: every ascending chain of ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \dots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \dots$$

ullet Classically: FBP \leftrightarrow ACC.

Problem:

FBP and ACC are not constructively meaningful!

Classical logic := Excluded Middle (LEM) + Axiom of Choice (AC).

Classical Noetherianity for Rings

- FBP (Finite Basis Property): every ideal is finitely generated;
- ACC: every ascending chain of ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \dots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \dots$$

ullet Classically: FBP \leftrightarrow ACC.

Problem:

FBP and ACC are not constructively meaningful!

Classical logic := Excluded Middle (LEM) + Axiom of Choice (AC).

Classical Noetherianity for Rings

- FBP (Finite Basis Property): every ideal is finitely generated;
- ACC: every ascending chain of ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \dots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \dots$$

Classically: FBP ↔ ACC.

Problem

FBP and ACC are not constructively meaningful!

 ${\sf Classical\ logic} := {\sf Excluded\ Middle\ (LEM)} + {\sf Axiom\ of\ Choice\ (AC)}.$

Classical Noetherianity for Rings

- FBP (Finite Basis Property): every ideal is finitely generated;
- ACC: every ascending chain of ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \dots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \dots$$

◆ Classically: FBP ↔ ACC.

Problem

FBP and ACC are not constructively meaningful!

 ${\sf Classical\ logic} := {\sf Excluded\ Middle\ (LEM)} + {\sf Axiom\ of\ Choice\ (AC)}.$

Classical Noetherianity for Rings

- FBP (Finite Basis Property): every ideal is finitely generated;
- ACC: every ascending chain of ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \quad \Rightarrow \quad \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$$

Classically: FBP ↔ ACC.

Problem

FBP and ACC are not constructively meaningful!

 ${\sf Classical\ logic} := {\sf Excluded\ Middle\ (LEM)} + {\sf Axiom\ of\ Choice\ (AC)}.$

Classical Noetherianity for Rings

- FBP (Finite Basis Property): every ideal is finitely generated;
- ACC: every ascending chain of ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$$

Classically: FBP ↔ ACC.

Problem

FBP and ACC are not constructively meaningful!

Classical logic := Excluded Middle (LEM) + Axiom of Choice (AC).

Classical Noetherianity for Rings

- FBP (Finite Basis Property): every ideal is finitely generated;
- ACC: every ascending chain of ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \quad \Rightarrow \quad \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$$

• Classically: FBP \leftrightarrow ACC.

Problem:

FBP and ACC are not constructively meaningful!

Classical logic := Excluded Middle (LEM) + Axiom of Choice (AC).

Classical Noetherianity for Rings

- FBP (Finite Basis Property): every ideal is finitely generated;
- ACC: every ascending chain of ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \quad \Rightarrow \quad \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$$

Classically: FBP ↔ ACC.

Problem:

FBP and ACC are not constructively meaningful!

Toward a constructive ACC

ACC: every ascending chain of ideals stabilizes

$$l_0 \subseteq l_1 \subseteq l_2 \subseteq \ldots \Rightarrow \exists n : l_n = l_{n+1} = l_{n+2} = \ldots;$$

• ACCfg: every ascending chain of finitely generated ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$$

• ACC₀: every ascending chain of ideals *stalls*

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \quad \Rightarrow \quad \exists n : I_n = I_{n+1};$$

ACC₀^{fg}: every ascending chain of finitely generated ideals stalls

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \dots \Rightarrow \exists n : I_n = I_{n+1}$$

ACC: is *not* constructive, e.g. \mathbb{F}_2 ;

ACC^{fg}: is *not* constructive, e.g. by Halting problem for Turing machines;

ACC₀: is *not* constructive, e.g. by topological models of intuitionistic logic;

 ACC_0^{fg} : is constructive! as discovered by Richman and Seidenberg;

Toward a constructive ACC

ACC: every ascending chain of ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$$

 \bullet ACC fg : every ascending chain of finitely generated ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$$

• ACC₀: every ascending chain of ideals *stalls*

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \quad \Rightarrow \quad \exists n : I_n = I_{n+1};$$

ullet ACC $^{fg}_0$: every ascending chain of finitely generated ideals stalls

$$l_0 \subseteq l_1 \subseteq l_2 \subseteq \ldots \quad \Rightarrow \quad \exists n : l_n = l_{n+1};$$

ACC: is *not* constructive, e.g. \mathbb{F}_2 ;

ACC^{fg}: is not constructive, e.g. by Halting problem for Turing machines;

ACC₀: is not constructive, e.g. by topological models of intuitionistic logic;

ACC₀^{fg}: is constructive! as discovered by Richman and Seidenberg;

Toward a constructive ACC

ACC: every ascending chain of ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$$

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \ldots$$

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \quad \Rightarrow \quad \exists n : I_n = I_{n+1};$$

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \dots \Rightarrow \exists n : I_n = I_{n+1}$$

Toward a constructive ACC

ACC: every ascending chain of ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$$

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \ldots$$

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \dots \Rightarrow \exists n : I_n = I_{n+1}$$

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \dots \Rightarrow \exists n : I_n = I_{n+1}$$

ACC: is *not* constructive, e.g. \mathbb{F}_2 ;

Toward a constructive ACC

ACC: every ascending chain of ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$$

ACC^{fg}: every ascending chain of finitely generated ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$$

ACC₀: every ascending chain of ideals stalls

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \dots \Rightarrow \exists n : I_n = I_{n+1};$$

ullet ACC $_0^{tg}$: every ascending chain of finitely generated ideals stalls

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \dots \Rightarrow \exists n : I_n = I_{n+1};$$

ACC: is *not* constructive, e.g. \mathbb{F}_2 ;

ACC^{fg}: is *not* constructive, e.g. by Halting problem for Turing machines;

ACC₀: is *not* constructive, e.g. by topological models of intuitionistic logic;

ACC₀^{fg}: is constructive! as discovered by Richman and Seidenberg;

Toward a constructive ACC

ACC: every ascending chain of ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$$

ACC^{fg}: every ascending chain of finitely generated ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$$

ACC₀: every ascending chain of ideals stalls

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \dots \Rightarrow \exists n : I_n = I_{n+1};$$

ACC₀^{rg}: every ascending chain of finitely generated ideals stalls

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \dots \Rightarrow \exists n : I_n = I_{n+1}$$

ACC: is *not* constructive, e.g. \mathbb{F}_2 ;

ACC^{fg}: is not constructive, e.g. by Halting problem for Turing machines;

ACC₀: is *not* constructive, e.g. by topological models of intuitionistic logic;

ACC₀^{fg}: is constructive! as discovered by Richman and Seidenberg;

Toward a constructive ACC

ACC: every ascending chain of ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$$

• ACC^{fg}: every ascending chain of finitely generated ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$$

ACC₀: every ascending chain of ideals stalls

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1};$$

ACC₀^{rg}: every ascending chain of finitely generated ideals stalls

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \dots \Rightarrow \exists n : I_n = I_{n+1}$$

ACC: is *not* constructive, e.g. \mathbb{F}_2 ;

ACC^{fg}: is not constructive, e.g. by Halting problem for Turing machines;

ACC₀: is *not* constructive, e.g. by topological models of intuitionistic logic;

ACC₀^{fg}: is constructive! as discovered by Richman and Seidenberg;

Toward a constructive ACC

ACC: every ascending chain of ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$$

ACC^{fg}: every ascending chain of finitely generated ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$$

ACC₀: every ascending chain of ideals stalls

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1};$$

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \dots \Rightarrow \exists n : I_n = I_{n+1};$$

ACC: is *not* constructive, e.g. \mathbb{F}_2 ;

ACC^{fg}: is *not* constructive, e.g. by Halting problem for Turing machines;

ACC₀: is *not* constructive, e.g. by topological models of intuitionistic logic;

Toward a constructive ACC

ACC: every ascending chain of ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$$

ACC^{fg}: every ascending chain of finitely generated ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \quad \Rightarrow \quad \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$$

ACC₀: every ascending chain of ideals stalls

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1};$$

ACC₀^{fg}: every ascending chain of finitely generated ideals stalls

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1};$$

ACC: is *not* constructive, e.g. \mathbb{F}_2 ;

ACC^{fg}: is *not* constructive, e.g. by Halting problem for Turing machines;

ACC₀: is *not* constructive, e.g. by topological models of intuitionistic logic;

Toward a constructive ACC

ACC: every ascending chain of ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$$

ACC^{fg}: every ascending chain of finitely generated ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$$

ACC₀: every ascending chain of ideals stalls

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1};$$

ACC₀^{fg}: every ascending chain of finitely generated ideals stalls

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1};$$

ACC: is *not* constructive, e.g. \mathbb{F}_2 ;

ACC^{fg}: is *not* constructive, e.g. by Halting problem for Turing machines;

ACC₀: is not constructive, e.g. by topological models of intuitionistic logic;

ACC₀^{fg}: is constructive! as discovered by Richman and Seidenberg;

Toward a constructive ACC

ACC: every ascending chain of ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$$

ACC^{fg}: every ascending chain of finitely generated ideals stabilizes

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1} = I_{n+2} = \ldots;$$

ACC₀: every ascending chain of ideals stalls

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \ldots \Rightarrow \exists n : I_n = I_{n+1};$$

ACC₀^{fg}: every ascending chain of finitely generated ideals stalls

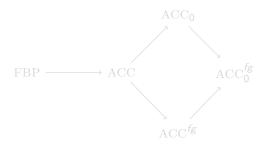
$$I_0 \subset I_1 \subset I_2 \subset \ldots \Rightarrow \exists n : I_n = I_{n+1};$$

ACC: is *not* constructive, e.g. \mathbb{F}_2 ;

ACC^{fg}: is *not* constructive, e.g. by Halting problem for Turing machines;

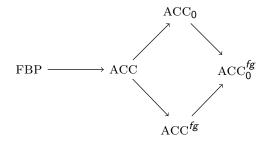
ACC₀: is *not* constructive, e.g. by topological models of intuitionistic logic;

ACC₀^{fg}: is constructive! as discovered by Richman and Seidenberg;



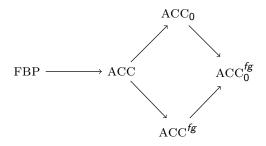
No other implications*

^{*}Except maybe $ACC_0 \rightarrow ACC^{fg}$



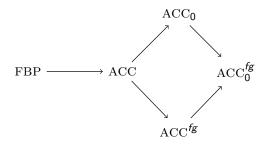
No other implications*

*Except maybe $ACC_0 \rightarrow ACC^{fg}$



No other implications*

^{*}Except maybe $ACC_0 \rightarrow ACC^{fg}$



No other implications*

*Except maybe ${ ext{ACC}_0} o { ext{ACC}^{fg}}$

Let (E, \leq) be a partial order with $x < y \equiv x \leq y \land x \neq y$:

Hereditary conditions

- $H \subseteq E$ is hereditary if $\forall x (\{y \mid y < x\} \subseteq H \Rightarrow x \in H)$;
- *E* is hereditary well-founded, hwf, if $H \subseteq E$ hereditary $\Rightarrow H = E$;
- \bullet E is well ordered if it is hereditary well-founded and linear.

Ascending trees (Richman'03)

An ascending tree in E is a family $(x_i)_{i \in I} \subseteq E$ where

- / is a tree;
- $i < j \Rightarrow x_i \leqslant x_j$.

An ascending tree stalls if $\exists i < j : x_i = x_j$.

Inductive definition of "P bars σ "

- if $P(\sigma)$ then $P(\sigma)$
- if $P|\sigma x$ for all $x \ge \sigma$, then $P|\sigma$

Let (E, \leq) be a partial order with $x < y \equiv x \leq y \land x \neq y$:

- $H \subseteq E$ is hereditary if $\forall x (\{y \mid y < x\} \subseteq H \Rightarrow x \in H)$;
- E is hereditary well-founded, hwf, if $H \subseteq E$ hereditary $\Rightarrow H = E$;
- E is well ordered if it is hereditary well-founded and linear.

An ascending tree in E is a family $(x_i)_{i \in I} \subseteq E$ where

- I is a tree:
- $i < j \Rightarrow x_i \leqslant x_i$.

Let (E, \leq) be a partial order with $x < y \equiv x \leq y \land x \neq y$:

Hereditary conditions

- I is a tree:
- $i < j \Rightarrow x_i \leqslant x_i$.

Let (E, \leq) be a partial order with $x < y \equiv x \leq y \land x \neq y$:

Hereditary conditions

- $H \subseteq E$ is hereditary if $\forall x (\{y \mid y < x\} \subseteq H \Rightarrow x \in H)$;

- I is a tree:
- $i < j \Rightarrow x_i \leqslant x_i$.

Let (E, \leq) be a partial order with $x < y \equiv x \leq y \land x \neq y$:

Hereditary conditions

- $H \subseteq E$ is hereditary if $\forall x (\{y \mid y < x\} \subseteq H \Rightarrow x \in H)$;
- *E* is hereditary well-founded, hwf, if $H \subseteq E$ hereditary $\Rightarrow H = E$;
- E is well ordered if it is hereditary well-founded and linear.

Ascending trees (Richman'03)

An ascending tree in E is a family $(x_i)_{i \in I} \subseteq E$ where

- / is a tree;
- $i < j \Rightarrow x_i \leqslant x_j$.

An ascending tree *stalls* if $\exists i < j : x_i = x_j$.

Inductive definition of "P bars σ "

- if $P(\sigma)$ then $P(\sigma)$
- if $P|\sigma x$ for all $x \ge \sigma$, then $P|\sigma$

Let (E, \leq) be a partial order with $x < y \equiv x \leq y \land x \neq y$:

Hereditary conditions

- $H \subseteq E$ is hereditary if $\forall x (\{y \mid y < x\} \subseteq H \Rightarrow x \in H)$;
- *E* is hereditary well-founded, hwf, if $H \subseteq E$ hereditary $\Rightarrow H = E$;
- E is well ordered if it is hereditary well-founded and linear.

Ascending trees (Richman'03)

An ascending tree in E is a family $(x_i)_{i \in I} \subseteq E$ where

- / is a tree;
- $i < j \Rightarrow x_i \leqslant x_j$.

An ascending tree *stalls* if $\exists i < j : x_i = x_j$.

Inductive definition of "P bars σ "

- if $P(\sigma)$ then $P(\sigma)$
- if $P|\sigma x$ for all $x \ge \sigma$, then $P|\sigma$

Let (E, \leq) be a partial order with $x < y \equiv x \leq y \land x \neq y$:

Hereditary conditions

- $H \subseteq E$ is hereditary if $\forall x (\{y \mid y < x\} \subseteq H \Rightarrow x \in H)$;
- E is hereditary well-founded, hwf, if $H \subseteq E$ hereditary $\Rightarrow H = E$;
- ullet is well ordered if it is hereditary well-founded and linear.

Ascending trees (Richman'03)

An ascending tree in E is a family $(x_i)_{i \in I} \subseteq E$ where

- / is a tree;
- $i < j \Rightarrow x_i \leqslant x_j$

An ascending tree *stalls* if $\exists i < j : x_i = x_j$.

Inductive definition of "P bars σ "

- if $P(\sigma)$ then $P(\sigma)$
- if $P|\sigma x$ for all $x \ge \sigma$, then $P|\sigma$

Let (E, \leq) be a partial order with $x < y \equiv x \leq y \land x \neq y$:

Hereditary conditions

- $H \subseteq E$ is hereditary if $\forall x (\{y \mid y < x\} \subseteq H \Rightarrow x \in H)$;
- E is hereditary well-founded, hwf, if $H \subseteq E$ hereditary $\Rightarrow H = E$;
- ullet is well ordered if it is hereditary well-founded and linear.

Ascending trees (Richman'03)

An ascending tree in E is a family $(x_i)_{i \in I} \subseteq E$ where

- I is a tree;
- $i < j \Rightarrow x_i \leqslant x_j$.

An ascending tree *stalls* if $\exists i < j : x_i = x_j$.

Inductive definition of "P bars σ "

- if $P(\sigma)$ then $P(\sigma)$
- if $P|\sigma x$ for all $x \ge \sigma$, then $P|\sigma$

Let (E, \leq) be a partial order with $x < y \equiv x \leq y \land x \neq y$:

Hereditary conditions

- $H \subseteq E$ is hereditary if $\forall x (\{y \mid y < x\} \subseteq H \Rightarrow x \in H)$;
- *E* is hereditary well-founded, hwf, if $H \subseteq E$ hereditary $\Rightarrow H = E$;
- ullet is well ordered if it is hereditary well-founded and linear.

Ascending trees (Richman'03)

An ascending tree in E is a family $(x_i)_{i \in I} \subseteq E$ where

- I is a tree;
- $i < j \Rightarrow x_i \leqslant x_j$.

An ascending tree *stalls* if $\exists i < j : x_i = x_j$.

Inductive definition of "P bars σ "

- if $P(\sigma)$ then $P(\sigma)$
- if $P|\sigma x$ for all $x \ge \sigma$, then $P|\sigma$.

Let (E, \leq) be a partial order with $x < y \equiv x \leq y \land x \neq y$:

Hereditary conditions

- $H \subseteq E$ is hereditary if $\forall x (\{y \mid y < x\} \subseteq H \Rightarrow x \in H)$;
- *E* is hereditary well-founded, hwf, if $H \subseteq E$ hereditary $\Rightarrow H = E$;
- ullet is well ordered if it is hereditary well-founded and linear.

Ascending trees (Richman'03)

An ascending tree in E is a family $(x_i)_{i \in I} \subseteq E$ where

- I is a tree;
- $i < j \Rightarrow x_i \leqslant x_j$.

An ascending tree *stalls* if $\exists i < j : x_i = x_j$.

Inductive definition of "P bars σ "

- if $P(\sigma)$ then $P|\sigma$;
- if $P|\sigma x$ for all $x \geqslant \sigma$, then $P|\sigma$.

Intuitionistic Noetherian properties and their relations

$ig(\mathsf{A} \ \mathsf{partial} \ \mathsf{order} \ (\mathsf{E},\leqslant)$ is

- RS-Noetherian if for $e_1 \leqslant e_2 \leqslant \dots$ there is n with $e_n = e_{n+1}$;
- ML-Noetherian if the reverse order (E, \ge) is hwf;
- strongly Noetherian if there is a well-order W and a strictly descending map $\varphi \colon E \to W$, i.e. $e < f \Rightarrow \varphi(e) > \varphi(f)$;
- tree Noetherian if every ascending tree in *E* stalls;
- inductively Noetherian if Stall | [], where Stall (σ) =" σ is an ascending finite list with repeated terms".

Def: given a ring R, $\mathcal{I}_f(R)$ is the set of finitely generated ideals of R

Def: a ring R is * Noetherian if $(\mathcal{I}_f(R), \subseteq)$ is * Noetherian.

Constructive implications for a decidable poset (E,\leqslant)

strong \longrightarrow ind \longrightarrow tree \longrightarrow

A partial order (E,\leqslant) is

- RS-Noetherian if for $e_1 \leqslant e_2 \leqslant \dots$ there is n with $e_n = e_{n+1}$;
- ML-Noetherian if the reverse order (E, \ge) is hwf;
- strongly Noetherian if there is a well-order W and a strictly descending map $\varphi \colon E \to W$, i.e. $e < f \Rightarrow \varphi(e) > \varphi(f)$;
- ullet tree Noetherian if every ascending tree in E stalls;
- inductively Noetherian if Stall $| \cdot |$, where Stall (σ) =" σ is an ascending finite list with repeated terms".

Def: given a ring R, $\mathcal{I}_f(R)$ is the set of finitely generated ideals of R

Def: a ring R is * Noetherian if $(\mathcal{I}_f(R), \subseteq)$ is * Noetherian.

Constructive implications for a decidable poset (E,\leqslant)

1

A partial order (E, \leq) is

- RS-Noetherian if for $e_1 \leqslant e_2 \leqslant \dots$ there is n with $e_n = e_{n+1}$;

Constructive implications for a decidable poset
$$(E, \leqslant)$$

A partial order (E, \leqslant) is

- RS-Noetherian if for $e_1 \leqslant e_2 \leqslant \dots$ there is n with $e_n = e_{n+1}$;
- ML-Noetherian if the reverse order (E, \ge) is hwf;

A partial order (E,\leqslant) is

- RS-Noetherian if for $e_1 \leqslant e_2 \leqslant \dots$ there is n with $e_n = e_{n+1}$;
- ML-Noetherian if the reverse order (E, \ge) is hwf;
- strongly Noetherian if there is a well-order W and a strictly descending map $\varphi \colon E \to W$, i.e. $e < f \Rightarrow \varphi(e) > \varphi(f)$;
- ullet tree Noetherian if every ascending tree in E stalls;
- inductively Noetherian if Stall | [], where Stall (σ) =" σ is an ascending finite list with repeated terms"

Def: given a ring R, $\mathcal{I}_f(R)$ is the set of finitely generated ideals of R. **Def:** a ring R is * Noetherian if $(\mathcal{I}_f(R), \subseteq)$ is * Noetherian.

constructive implications for a decidable poset
$$(E, \leqslant)$$
 strong \longrightarrow ind \longrightarrow tree \longrightarrow RS

A partial order (E, \leq) is

- RS-Noetherian if for $e_1 \leqslant e_2 \leqslant \dots$ there is n with $e_n = e_{n+1}$;
- ML-Noetherian if the reverse order (E, \geq) is hwf;
- ullet strongly Noetherian if there is a well-order W and a strictly descending map $\varphi \colon E \to W$, i.e. $e < f \Rightarrow \varphi(e) > \varphi(f)$;
- tree Noetherian if every ascending tree in E stalls;

strong
$$\longrightarrow$$
 ind \longrightarrow tree \longrightarrow RS

A partial order (E, \leq) is

- RS-Noetherian if for $e_1 \leqslant e_2 \leqslant \dots$ there is n with $e_n = e_{n+1}$;
- ML-Noetherian if the reverse order (E, \geq) is hwf;
- \bullet strongly Noetherian if there is a well-order W and a strictly descending map $\varphi \colon E \to W$, i.e. $e < f \Rightarrow \varphi(e) > \varphi(f)$;
- tree Noetherian if every ascending tree in E stalls;
- inductively Noetherian if Stall | [], where $Stall(\sigma)=$ " σ is an ascending finite list with repeated terms".

A partial order (E, \leqslant) is

- RS-Noetherian if for $e_1 \leqslant e_2 \leqslant \dots$ there is n with $e_n = e_{n+1}$;
- ML-Noetherian if the reverse order (E, \ge) is hwf;
- strongly Noetherian if there is a well-order W and a strictly descending map $\varphi \colon E \to W$, i.e. $e < f \Rightarrow \varphi(e) > \varphi(f)$;
- tree Noetherian if every ascending tree in E stalls;
- inductively Noetherian if Stall | [], where Stall (σ) =" σ is an ascending finite list with repeated terms".

Def: given a ring R, $\mathcal{I}_f(R)$ is the set of finitely generated ideals of R.

A partial order (E, \leqslant) is

- RS-Noetherian if for $e_1 \leqslant e_2 \leqslant \dots$ there is n with $e_n = e_{n+1}$;
- ML-Noetherian if the reverse order (E, \geqslant) is hwf;
- strongly Noetherian if there is a well-order W and a strictly descending map $\varphi \colon E \to W$, i.e. $e < f \Rightarrow \varphi(e) > \varphi(f)$;
- tree Noetherian if every ascending tree in E stalls;
- inductively Noetherian if Stall | [], where Stall (σ) =" σ is an ascending finite list with repeated terms".

Def: given a ring R, $\mathcal{I}_f(R)$ is the set of finitely generated ideals of R.

Constructive implications for a decidable poset
$$(E, \leqslant)$$
strong \longrightarrow ind \longrightarrow tree \longrightarrow RS

A partial order (E, \leqslant) is

- RS-Noetherian if for $e_1 \leqslant e_2 \leqslant \dots$ there is n with $e_n = e_{n+1}$;
- ML-Noetherian if the reverse order (E, \ge) is hwf;
- strongly Noetherian if there is a well-order W and a strictly descending map $\varphi \colon E \to W$, i.e. $e < f \Rightarrow \varphi(e) > \varphi(f)$;
- tree Noetherian if every ascending tree in E stalls;
- inductively Noetherian if Stall | [], where Stall (σ) =" σ is an ascending finite list with repeated terms".

Def: given a ring R, $\mathcal{I}_f(R)$ is the set of finitely generated ideals of R.

Def: a ring R is * Noetherian if $(\mathcal{I}_f(R), \subseteq)$ is * Noetherian.

Constructive implications for a decidable poset (E, \leq)

Quasi-order

A qo (Q,\leqslant) is a set Q with a transitive and reflexive relation \leqslant

Notation

- $p < q \equiv p \leqslant q \land q \nleq p$
- $\bullet p \perp q \equiv p \nleq q \land q \nleq p;$
- $p \sim q \equiv p \leqslant q \land q \leqslant p$.

Auxiliary definitions

For every qo (Q, \leqslant) :

- the closure of $B \subseteq Q$ is $\uparrow B := \{ q \in Q \mid \exists b \in B \ b \leqslant q \};$
- *B* is closed if $B=\uparrow B$ and finitely generated if $B=\uparrow\{b_1,\ldots,b_n\}$;
- a sequence $(q_k)_k$ in Q is a total function from $\mathbb N$ to Q;
- an antichain is a sequence $(q_k)_k$ such that $q_i \perp q_j$ if $i \neq j$;
- an extension of (Q, \leqslant) is a qo \preccurlyeq on Q extending \leqslant , i.e., $p \leqslant q \Rightarrow p \preccurlyeq q$ and $p \preccurlyeq q \land q \preccurlyeq p \Rightarrow p \sim q$.

Quasi-order

A qo (Q, \leq) is a set Q with a transitive and reflexive relation \leq .

Notation

- $p < q \equiv p \leqslant q \land q \nleq p$
- ullet $p \perp q \equiv p \not\leqslant q \land q \not\leqslant p;$
- $\bullet \ p \sim q \equiv p \leqslant q \land q \leqslant p.$

Auxiliary definitions

For every qo (Q, \leqslant) :

- the closure of $B \subseteq Q$ is $\uparrow B := \{ q \in Q \mid \exists b \in B \ b \leqslant q \};$
- *B* is closed if $B=\uparrow B$ and finitely generated if $B=\uparrow \{b_1,\ldots,b_n\}$;
- a sequence $(q_k)_k$ in Q is a total function from $\mathbb N$ to Q;
- an antichain is a sequence $(q_k)_k$ such that $q_i \perp q_i$ if $i \neq j$;
- an extension of (Q, \leqslant) is a qo \preccurlyeq on Q extending \leqslant , i.e., $p \leqslant q \Rightarrow p \preccurlyeq q$ and $p \preccurlyeq q \land q \preccurlyeq p \Rightarrow p \sim q$.

Quasi-order

A qo (Q, \leq) is a set Q with a transitive and reflexive relation \leq .

Notation

- $p < q \equiv p \leqslant q \land q \nleq p$;
- $p \perp q \equiv p \nleq q \land q \nleq p$;
- $p \sim q \equiv p \leqslant q \land q \leqslant p$.

Auxiliary definitions

For every qo (Q,\leqslant) :

- the closure of $B \subseteq Q$ is $\uparrow B := \{ q \in Q \mid \exists b \in B \ b \leqslant q \};$
- *B* is closed if $B=\uparrow B$ and finitely generated if $B=\uparrow \{b_1,\ldots,b_n\}$;
- a sequence $(q_k)_k$ in Q is a total function from $\mathbb N$ to Q;
- an antichain is a sequence $(q_k)_k$ such that $q_i \perp q_j$ if $i \neq j$;
- an extension of (Q, \leqslant) is a qo \preccurlyeq on Q extending \leqslant , i.e., $p \leqslant q \Rightarrow p \preccurlyeq q$ and $p \preccurlyeq q \land q \preccurlyeq p \Rightarrow p \sim q$.

Quasi-order

A qo (Q, \leqslant) is a set Q with a transitive and reflexive relation \leqslant .

Notation

- $p < q \equiv p \leqslant q \land q \nleq p$;
- $p \perp q \equiv p \nleq q \land q \nleq p$;
- $p \sim q \equiv p \leqslant q \land q \leqslant p$.

Auxiliary definitions

For every qo (Q, \leq) :

- the closure of $B \subseteq Q$ is $\uparrow B := \{q \in Q \mid \exists b \in B \ b \leqslant q\}$;
- B is closed if $B=\uparrow B$ and finitely generated if $B=\uparrow \{b_1,\ldots,b_n\}$
- a sequence $(q_k)_k$ in Q is a total function from $\mathbb N$ to Q;
- an antichain is a sequence $(q_k)_k$ such that $q_i \perp q_i$ if $i \neq j$;
- an extension of (Q, \leq) is a qo \leq on Q extending \leq , i.e., $p \leq q \Rightarrow p \leq q$ and $p \leq q \land q \leq p \Rightarrow p \sim q$.

Quasi-order

A qo (Q, \leqslant) is a set Q with a transitive and reflexive relation \leqslant .

Notation

- $p < q \equiv p \leqslant q \land q \nleq p$;
- $p \perp q \equiv p \nleq q \land q \nleq p$;
- $p \sim q \equiv p \leqslant q \land q \leqslant p$.

Auxiliary definitions

For every qo (Q, \leqslant) :

- the closure of $B \subseteq Q$ is $\uparrow B := \{q \in Q \mid \exists b \in B \ b \leqslant q\}$;
- *B* is closed if $B=\uparrow B$ and finitely generated if $B=\uparrow \{b_1,\ldots,b_n\}$;
- a sequence $(q_k)_k$ in Q is a total function from $\mathbb N$ to Q;
- an antichain is a sequence $(q_k)_k$ such that $q_i \perp q_i$ if $i \neq j$
- an extension of (Q, \leq) is a qo \leq on Q extending \leq , i.e. $p \leq q \Rightarrow p \leq q$ and $p \leq q \land q \leq p \Rightarrow p \sim q$.

Quasi-order

A qo (Q, \leq) is a set Q with a transitive and reflexive relation \leq .

Notation

- $p < q \equiv p \leqslant q \land q \nleq p$;
- $p \perp q \equiv p \nleq q \land q \nleq p$;
- $p \sim q \equiv p \leqslant q \land q \leqslant p$.

Auxiliary definitions

For every qo (Q, \leq) :

- the closure of $B \subseteq Q$ is $\uparrow B := \{q \in Q \mid \exists b \in B \ b \leqslant q\}$;
- B is closed if $B=\uparrow B$ and finitely generated if $B=\uparrow \{b_1,\ldots,b_n\}$;
- ullet a sequence $(q_k)_k$ in Q is a total function from $\mathbb N$ to Q
- an antichain is a sequence $(q_k)_k$ such that $q_i \perp q_i$ if $i \neq j$
- an extension of (Q, \leq) is a qo \leq on Q extending \leq , i.e. $p \leq q \Rightarrow p \leq q$ and $p \leq q \land q \leq p \Rightarrow p \sim q$.

Quasi-order

A qo (Q, \leq) is a set Q with a transitive and reflexive relation \leq .

Notation

- $p < q \equiv p \leqslant q \land q \nleq p$;
- $p \perp q \equiv p \nleq q \land q \nleq p$;
- $p \sim q \equiv p \leqslant q \land q \leqslant p$.

Auxiliary definitions

For every qo (Q, \leqslant) :

- the closure of $B \subseteq Q$ is $\uparrow B := \{q \in Q \mid \exists b \in B \ b \leqslant q\}$;
- B is closed if $B=\uparrow B$ and finitely generated if $B=\uparrow \{b_1,\ldots,b_n\}$;
- a sequence $(q_k)_k$ in Q is a total function from $\mathbb N$ to Q;
- an antichain is a sequence $(q_k)_k$ such that $q_i \perp q_j$ if $i \neq j$
- an extension of (Q, \leq) is a qo \leq on Q extending \leq , i.e. $p \leq q \Rightarrow p \leq q$ and $p \leq q \land q \leq p \Rightarrow p \sim q$.

Quasi-order

A qo (Q, \leq) is a set Q with a transitive and reflexive relation \leq .

Notation

- $p < q \equiv p \leqslant q \land q \nleq p$;
- $p \perp q \equiv p \nleq q \land q \nleq p$;
- $p \sim q \equiv p \leqslant q \land q \leqslant p$.

Auxiliary definitions

For every qo (Q, \leq) :

- the closure of $B \subseteq Q$ is $\uparrow B := \{q \in Q \mid \exists b \in B \ b \leqslant q\}$;
- B is closed if $B=\uparrow B$ and finitely generated if $B=\uparrow \{b_1,\ldots,b_n\}$;
- a sequence $(q_k)_k$ in Q is a total function from $\mathbb N$ to Q;
- an antichain is a sequence $(q_k)_k$ such that $q_i \perp q_j$ if $i \neq j$;
- an extension of (Q, \leqslant) is a qo \preccurlyeq on Q extending \leqslant , i.e. $p \leqslant q \Rightarrow p \preccurlyeq q$ and $p \preccurlyeq q \land q \preccurlyeq p \Rightarrow p \sim q$.

Quasi-order

A qo (Q, \leq) is a set Q with a transitive and reflexive relation \leq .

Notation

- $p < q \equiv p \leqslant q \land q \nleq p$;
- $p \perp q \equiv p \nleq q \land q \nleq p$;
- $p \sim q \equiv p \leqslant q \land q \leqslant p$.

Auxiliary definitions

For every qo (Q, \leqslant) :

- the closure of $B \subseteq Q$ is $\uparrow B := \{q \in Q \mid \exists b \in B \ b \leqslant q\}$;
- B is closed if $B=\uparrow B$ and finitely generated if $B=\uparrow \{b_1,\ldots,b_n\}$;
- a sequence $(q_k)_k$ in Q is a total function from $\mathbb N$ to Q;
- an antichain is a sequence $(q_k)_k$ such that $q_i \perp q_i$ if $i \neq j$;
- an extension of (Q, \leqslant) is a qo \preccurlyeq on Q extending \leqslant , i.e., $p \leqslant q \Rightarrow p \preccurlyeq q$ and $p \preccurlyeq q \land q \preccurlyeq p \Rightarrow p \sim q$.

A qo (Q,\leqslant) is

- well-founded if for $q_1 \geqslant q_2 \geqslant \dots$ there is n such that $q_n = q_{n+1}$;
- ullet wqo if for any sequence $(q_k)_k$ in Q there exist $i\!<\!j$ with $q_i\!\leqslant\!q_j$
- wqo(set) if every sequence $(q_k)_k$ in Q has an infinite ascending subsequence: there are $k_0 < k_1 < \ldots$ such that $q_{k_0} \leqslant q_{k_1} \leqslant \ldots$;
- wqo(anti) if it is well-founded and every antichain is finite;
- wqo(ext) if every linear extension of Q is well-founded;
- wqo(fbp) if every closed subset is finitely generated;
- wqo(acc) if the set of closed subsets is Noetherian
- wqo(*) if the set of finitely generated closed subsets is *Noetherian.

A qo (Q, \leqslant) is

- well-founded if for $q_1 \geqslant q_2 \geqslant \dots$ there is n such that $q_n = q_{n+1}$;
- ullet wqo if for any sequence $(q_k)_k$ in Q there exist $i\!<\! j$ with $q_i\!\leqslant\! q_j$
- wqo(set) if every sequence $(q_k)_k$ in Q has an infinite ascending subsequence: there are $k_0 < k_1 < \dots$ such that $q_{k_0} \leqslant q_{k_1} \leqslant \dots$;
- wqo(anti) if it is well-founded and every antichain is finite;
- wqo(ext) if every linear extension of Q is well-founded;
- wqo(fbp) if every closed subset is finitely generated;
- wqo(acc) if the set of closed subsets is Noetherian
- wqo(*) if the set of finitely generated closed subsets is *Noetherian.

A qo (Q, \leqslant) is

- well-founded if for $q_1 \geqslant q_2 \geqslant \dots$ there is n such that $q_n = q_{n+1}$;
- ullet wqo if for any sequence $(q_k)_k$ in Q there exist $i\!<\!j$ with $q_i\!\leqslant\! q_j$
- wqo(set) if every sequence $(q_k)_k$ in Q has an infinite ascending subsequence: there are $k_0 < k_1 < \ldots$ such that $q_{k_0} \leqslant q_{k_1} \leqslant \ldots$;
- wqo(anti) if it is well-founded and every antichain is finite;
- wqo(ext) if every linear extension of Q is well-founded;
- wqo(fbp) if every closed subset is finitely generated;
- wqo(acc) if the set of closed subsets is Noetherian
- wqo(*) if the set of finitely generated closed subsets is *Noetherian.

A qo (Q, \leqslant) is

- well-founded if for $q_1 \geqslant q_2 \geqslant \dots$ there is n such that $q_n = q_{n+1}$;
- wqo if for any sequence $(q_k)_k$ in Q there exist i < j with $q_i \leqslant q_j$;
- wqo(set) if every sequence $(q_k)_k$ in Q has an infinite ascending subsequence: there are $k_0 < k_1 < \dots$ such that $q_{k_0} \leqslant q_{k_1} \leqslant \dots$;
- wqo(anti) if it is well-founded and every antichain is finite
- wqo(ext) if every linear extension of Q is well-founded;
- wqo(fbp) if every closed subset is finitely generated;
- wqo(acc) if the set of closed subsets is Noetherian
- wqo(*) if the set of finitely generated closed subsets is *Noetherian.

A qo (Q,\leqslant) is

- well-founded if for $q_1 \geqslant q_2 \geqslant \dots$ there is n such that $q_n = q_{n+1}$;
- wqo if for any sequence $(q_k)_k$ in Q there exist i < j with $q_i \leqslant q_j$;
- wqo(set) if every sequence $(q_k)_k$ in Q has an infinite ascending subsequence: there are $k_0 < k_1 < \ldots$ such that $q_{k_0} \le q_{k_1} \le \ldots$;
- wqo(anti) if it is well-founded and every antichain is finite
- ullet wqo(ext) if every linear extension of Q is well-founded;
- wqo(fbp) if every closed subset is finitely generated;
- wqo(acc) if the set of closed subsets is Noetherian
- \bullet wqo(*) if the set of finitely generated closed subsets is *Noetherian

A qo (Q,\leqslant) is

- well-founded if for $q_1 \geqslant q_2 \geqslant \dots$ there is n such that $q_n = q_{n+1}$;
- wqo if for any sequence $(q_k)_k$ in Q there exist i < j with $q_i \leqslant q_j$;
- wqo(set) if every sequence $(q_k)_k$ in Q has an infinite ascending subsequence: there are $k_0 < k_1 < \dots$ such that $q_{k_0} \leqslant q_{k_1} \leqslant \dots$;
- wqo(anti) if it is well-founded and every antichain is finite;
- ullet wqo(ext) if every linear extension of Q is well-founded;
- wqo(fbp) if every closed subset is finitely generated;
- wqo(acc) if the set of closed subsets is Noetherian
- wqo(*) if the set of finitely generated closed subsets is *Noetherian.

A qo (Q,\leqslant) is

- well-founded if for $q_1 \geqslant q_2 \geqslant \dots$ there is n such that $q_n = q_{n+1}$;
- wqo if for any sequence $(q_k)_k$ in Q there exist i < j with $q_i \leqslant q_j$;
- wqo(set) if every sequence $(q_k)_k$ in Q has an infinite ascending subsequence: there are $k_0 < k_1 < \dots$ such that $q_{k_0} \leqslant q_{k_1} \leqslant \dots$;
- wqo(anti) if it is well-founded and every antichain is finite;
- wqo(ext) if every linear extension of Q is well-founded;
- wqo(fbp) if every closed subset is finitely generated;
- wqo(acc) if the set of closed subsets is Noetherian
- wqo(*) if the set of finitely generated closed subsets is *Noetherian.

A qo (Q,\leqslant) is

- well-founded if for $q_1 \geqslant q_2 \geqslant \dots$ there is n such that $q_n = q_{n+1}$;
- wqo if for any sequence $(q_k)_k$ in Q there exist i < j with $q_i \leqslant q_j$;
- wqo(set) if every sequence $(q_k)_k$ in Q has an infinite ascending subsequence: there are $k_0 < k_1 < \dots$ such that $q_{k_0} \leqslant q_{k_1} \leqslant \dots$;
- wqo(anti) if it is well-founded and every antichain is finite;
- wqo(ext) if every linear extension of Q is well-founded;
- wqo(fbp) if every closed subset is finitely generated;
- wqo(acc) if the set of closed subsets is Noetherian
- \bullet wqo(*) if the set of finitely generated closed subsets is *Noetherian

A qo (Q,\leqslant) is

- well-founded if for $q_1 \geqslant q_2 \geqslant \dots$ there is n such that $q_n = q_{n+1}$;
- wqo if for any sequence $(q_k)_k$ in Q there exist i < j with $q_i \leqslant q_j$;
- wqo(set) if every sequence $(q_k)_k$ in Q has an infinite ascending subsequence: there are $k_0 < k_1 < \dots$ such that $q_{k_0} \leqslant q_{k_1} \leqslant \dots$;
- wqo(anti) if it is well-founded and every antichain is finite;
- wqo(ext) if every linear extension of Q is well-founded;
- wqo(fbp) if every closed subset is finitely generated;
- wqo(acc) if the set of closed subsets is Noetherian;
- \bullet wqo(*) if the set of finitely generated closed subsets is *Noetherian.

A qo (Q,\leqslant) is

- well-founded if for $q_1 \geqslant q_2 \geqslant \dots$ there is n such that $q_n = q_{n+1}$;
- wqo if for any sequence $(q_k)_k$ in Q there exist i < j with $q_i \leqslant q_j$;
- wqo(set) if every sequence $(q_k)_k$ in Q has an infinite ascending subsequence: there are $k_0 < k_1 < \ldots$ such that $q_{k_0} \leqslant q_{k_1} \leqslant \ldots$;
- wqo(anti) if it is well-founded and every antichain is finite;
- wqo(ext) if every linear extension of Q is well-founded;
- wqo(fbp) if every closed subset is finitely generated;
- wqo(acc) if the set of closed subsets is Noetherian;
- wqo(*) if the set of finitely generated closed subsets is *Noetherian.

A qo (Q, \leqslant) is

- well-founded if for $q_1 \geqslant q_2 \geqslant \dots$ there is n such that $q_n = q_{n+1}$;
- wqo if for any sequence $(q_k)_k$ in Q there exist i < j with $q_i \leqslant q_j$;
- wqo(set) if every sequence $(q_k)_k$ in Q has an infinite ascending subsequence: there are $k_0 < k_1 < \ldots$ such that $q_{k_0} \leqslant q_{k_1} \leqslant \ldots$;
- wqo(anti) if it is well-founded and every antichain is finite;
- wqo(ext) if every linear extension of Q is well-founded;
- wqo(fbp) if every closed subset is finitely generated;
- wqo(acc) if the set of closed subsets is Noetherian;
- wqo(*) if the set of finitely generated closed subsets is *Noetherian.

Constructive relations between wgo definitions

Theorem

The conditions wqo(set), wqo(fbp) and wqo(acc) are not constructively meaningful.

Implications between constructive wqo definitions

$$wqo(str) \longrightarrow wqo(ML) \longrightarrow wqo(RS) \longrightarrow wqo$$

$$wqo(ext)$$

A closure property

Let \mathcal{P} any of the properties wqo, wqo(anti), ... except wqo(ext). If (Q, \leq) has property \mathcal{P} and $P \subseteq Q$, then (P, \leq) has property \mathcal{P} .

Constructive relations between wgo definitions

Theorem

The conditions wqo(set), wqo(fbp) and wqo(acc) are not constructively meaningful.

Implications between constructive wgo definitions

$$wqo(str) \longrightarrow wqo(ML) \longrightarrow wqo(RS) \longrightarrow wqo$$

$$wqo(ext)$$

A closure property

Let \mathcal{P} any of the properties wqo, wqo(anti), ... except wqo(ext). If (Q, \leq) has property \mathcal{P} and $P \subseteq Q$, then (P, \leq) has property \mathcal{P} .

Constructive relations between wgo definitions

Theorem

The conditions wqo(set), wqo(fbp) and wqo(acc) are not constructively meaningful.

Implications between constructive wqo definitions

$$\mathsf{wqo}(\mathsf{str}) \longrightarrow \mathsf{wqo}(\mathsf{ML}) \longrightarrow \mathsf{wqo}(\mathsf{RS}) \longrightarrow \mathsf{wqo}(\mathsf{ext})$$

A closure property

Let \mathcal{P} any of the properties wqo, wqo(anti), ... except wqo(ext). If (Q, \leq) has property \mathcal{P} and $P \subseteq Q$, then (P, \leq) has property \mathcal{P}

Constructive relations between wqo definitions

Theorem

The conditions wqo(set), wqo(fbp) and wqo(acc) are not constructively meaningful.

Implications between constructive wqo definitions

$$\mathsf{wqo}(\mathsf{str}) \longrightarrow \mathsf{wqo}(\mathsf{ML}) \longrightarrow \mathsf{wqo}(\mathsf{RS}) \longrightarrow \mathsf{wqo}(\mathsf{ext})$$

A closure property

Let \mathcal{P} any of the properties wqo, wqo(anti), ... except wqo(ext). If (Q, \leq) has property \mathcal{P} and $P \subseteq Q$, then (P, \leq) has property \mathcal{P} .

If P and Q have property \mathcal{P} , does

- $P \cup Q$ constructively have property \mathcal{P} ?
- $P \times Q$ constructively have property P?

Well-founded vs. hereditarily well-founded

Classically equivalent, but not constructively.

Reverse implications

Which of the following implications can be reversed?

- strongly Noetherian ⇒ ML-Noetherian;
- $wqo(RS) \Rightarrow wqo;$
- \Rightarrow wqo \Rightarrow wqo(anti);
- o . . .

Further closure properties

Is wqo(ext) closed under subset?

If P and Q have property P, does

- $P \dot{\cup} Q$ constructively have property \mathcal{P} ?
- $P \times Q$ constructively have property \mathcal{P} ?

Well-founded vs. hereditarily well-founded

Classically equivalent, but not constructively.

Reverse implications

Which of the following implications can be reversed?

- strongly Noetherian ⇒ ML-Noetherian;
- $wqo(RS) \Rightarrow wqo;$
- wqo ⇒ wqo(anti);
- . . .

Further closure properties

Is wqo(ext) closed under subset?

If P and Q have property P, does

- $P \dot{\cup} Q$ constructively have property \mathcal{P} ?
- $P \times Q$ constructively have property \mathcal{P} ?

Well-founded vs. hereditarily well-founded

Classically equivalent, but not constructively.

Reverse implications

Which of the following implications can be reversed?

- strongly Noetherian ⇒ ML-Noetherian;
- $wqo(RS) \Rightarrow wqo;$
- wqo ⇒ wqo(anti);
- . . .

Further closure properties

Is wqo(ext) closed under subset?

If P and Q have property P, does

- $P \dot{\cup} Q$ constructively have property \mathcal{P} ?
- $P \times Q$ constructively have property \mathcal{P} ?

Well-founded vs. hereditarily well-founded

Classically equivalent, but not constructively.

Reverse implications

Which of the following implications can be reversed?

- strongly Noetherian ⇒ ML-Noetherian;
- $wqo(RS) \Rightarrow wqo;$
- wqo \Rightarrow wqo(anti);
- . . .

Further closure properties

Is wqo(ext) closed under subset?

- P and Q have property P, does
- P > 0 constructively have property D?

Well-founded vs. hereditarily well-founded

Classically equivalent, but not constructively.

Reverse implications

Which of the following implications can be reversed?

- strongly Noetherian ⇒ ML-Noetherian;
- $wqo(RS) \Rightarrow wqo;$
- wqo \Rightarrow wqo(anti);
- . . .

Further closure properties

Is wqo(ext) closed under subset?

If P and Q have property \mathcal{P} , does

- $P \dot{\cup} Q$ constructively have property \mathcal{P} ?
- $P \times Q$ constructively have property \mathcal{P} ?

Well-founded vs. hereditarily well-founded

Classically equivalent, but not constructively.

Reverse implications

Which of the following implications can be reversed?

- strongly Noetherian ⇒ ML-Noetherian;
- $wqo(RS) \Rightarrow wqo;$
- wqo ⇒ wqo(anti);
- . . .

For now, RS-Noetherian *⇒* ML-Noetherian by A. Blass.

Further closure properties

Is wqo(ext) closed under subset? If P and Q have property P, does

- $P \dot{\cup} Q$ constructively have property \mathcal{P} ?
- $_{\circ}$ $P \times Q$ constructively have property \mathcal{P} ?

Well-founded vs. hereditarily well-founded

Classically equivalent, but not constructively.

Reverse implications

Which of the following implications can be reversed?

- strongly Noetherian ⇒ ML-Noetherian;
- $wqo(RS) \Rightarrow wqo;$
- wqo \Rightarrow wqo(anti);
- . . .

For now, RS-Noetherian \Rightarrow ML-Noetherian by A. Blass.

Further closure properties

Is wqo(ext) closed under subset?

If P and Q have property \mathcal{P} , does

- $P \dot{\cup} Q$ constructively have property \mathcal{P} ?
- $P \times Q$ constructively have property \mathcal{P} ?

Well-founded vs. hereditarily well-founded

Classically equivalent, but not constructively.

Reverse implications

Which of the following implications can be reversed?

- strongly Noetherian ⇒ ML-Noetherian;
- $wqo(RS) \Rightarrow wqo;$
- wqo ⇒ wqo(anti);
- . . .

Further closure properties

Is wqo(ext) closed under subset?

If P and Q have property \mathcal{P} , does

- $P \dot{\cup} Q$ constructively have property \mathcal{P} ?
- $P \times Q$ constructively have property \mathcal{P} ?

References:

Thank you!

Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc. 3, 2:326-336, (1952).

Richman, F.: Constructive Aspects of Noetherian Rings. Proceedings of the American Mathematical Society 44(2), 436-441, (1974).

Seidenberg, A.: What is Noetherian? Rendiconti del Seminario matematico e fisico di Milano 44(1), 55-61 (1974).

Jacobsson C., Löfwall C.: Standard bases for general coefficient rings and a new constructive proof of Hilbert's basis theorem. J. Symbolic Comput. 12(3), 337-371 (1991)

Richman, F.: The ascending tree condition: constructive algebra without countable choice. Commun. Algebra 31(4), 1993-2002 (2003)

Perdry, H.: Strongly Noetherian rings and constructive ideal theory. Journal of symbolic computation 37(4), 511-535 (2004).

Veldman, W.: An Intuitionistic Proof of Kruskal's Theorem. Archive for Mathematical Logic 43(2), 215-264 (2004).

Cholak P., Marcone A., and Solomon R.: Reverse mathematics and the equivalence of definitions for well and better quasi-orders. The Journal of symbolic logic, 66(1):683-55, (2004).