Internal languages of locally cartesian closed $(\infty,1)$ -categories

El Mehdi Cherradi

IRIF - CNRS - Université Paris Cité, MINES ParisTech - Université PSL

September 9, 2025

Outline

- 1 The internal language conjectures
- Some context for the problem
 - Tribes and clans
 - Strictification and rigidification
- Establishing the conjecture
 - Working with fibration categories
 - The approach
 - Proofs

From relative categories to quasicategories

Relative categories

RelCat

and quasicategories

QCat

are both objects that combine homotopy and category. They are in fact equivalent framework to talk about $(\infty,1)$ -categories.

From relative categories to quasicategories

Relative categories

RelCat

and quasicategories

QCat

are both objects that combine homotopy and category. They are in fact equivalent framework to talk about $(\infty, 1)$ -categories.

Definition

The \mathbf{Ho}_{∞} functor is defined as the following composite:

```
RelCat
      simplicial localization
 Cat<sub>∧</sub>
      fibrant replacement
 Cat<sub>∧</sub>
      N_{\Delta}(simplicial/homotopy-coherent nerve)
 QCat
```

From relative categories to quasicategories

Theorem (Barwick-Kan^[1])

The functor

 $\mathsf{Ho}_\infty : \mathsf{RelCat} \to \mathsf{QCat}$

is a DK-equivalence.

^[1] Clark Barwick and Daniel M Kan. "Relative categories: another model for the homotopy theory of homotopy theories". In: *Indagationes Mathematicae* 23.1-2 (2012), pp. 42–68, Clark Barwick and Daniël M Kan. "A Thomason-like Quillen equivalence between quasi-categories and relative categories". In: *arXiv* preprint *arXiv*:1101.0772 (2011).

Other $(\infty, 1)$ -categories frameworks

- Model categories
- Fibration/cofibration categories
- Kan-enriched categories
- Complete Segal Spaces

The conjectures

Conjecture (Internal language conjectures^[2])

The functor \mathbf{Ho}_{∞} restricts to DK-equivalences

 $\mathsf{CompCat}_{\Sigma,\mathit{Id}} o \mathsf{Qcat}_{\mathit{lex}}{}^{[3]} \ \mathsf{CompCat}_{\Sigma,\Pi_{\mathsf{ext}},\mathit{Id}} o \mathsf{Qcat}_{\mathit{Icc}}$

^[2] Krzysztof Kapulkin and Peter LeFanu Lumsdaine. "The homotopy theory of type theories". In: *Advances in Mathematics* 337 (2018), pp. 1–38.

^[3] Krzysztof Kapulkin and Karol Szumiło. "Internal languages of finitely complete (∞ , 1)-categories". In: Selecta Mathematica 25.2 (2019), pp. 1–46

The conjectures

Conjecture (Internal language conjectures^[2])

The functor \mathbf{Ho}_{∞} restricts to DK-equivalences

$$\mathsf{CompCat}_{\Sigma,\mathit{Id}} o \mathsf{Qcat}_{\mathit{lex}}{}^{[3]} \ \mathsf{CompCat}_{\Sigma,\Pi_{\mathsf{ext}},\mathit{Id}} o \mathsf{Qcat}_{\mathit{Icc}}$$

where the domain (resp. codomain) categories have morphisms that preserves the structure involved up to isomorphism (resp. equivalence).

^[2] Krzysztof Kapulkin and Peter LeFanu Lumsdaine. "The homotopy theory of type theories". In: *Advances in Mathematics* 337 (2018), pp. 1–38.

^[3] Krzysztof Kapulkin and Karol Szumiło. "Internal languages of finitely complete (∞ , 1)-categories". In: Selecta Mathematica 25.2 (2019), pp. 1–46

Outline

- The internal language conjectures
- Some context for the problem
 - Tribes and clans
 - Strictification and rigidification
- Establishing the conjecture
 - Working with fibration categories
 - The approach
 - Proofs

Clans

The notion of $clan^{[4]}$ essentially axiomatizes/rephrases the structure on a category \mathcal{C} equipped with a full comprehension structure, which is needed to interpret the core of type theory.

 El Mehdi Cherradi
 CIRM
 09/09/2025
 8 / 28

^{4]} André Joyal. "Notes on clans and tribes". In: arXiv preprint arXiv:1710.10238 (2017).

Clans

The notion of $clan^{[4]}$ essentially axiomatizes/rephrases the structure on a category $\mathcal C$ equipped with a full comprehension structure, which is needed to interpret the core of type theory.

Definition

A clan structure on a category $\mathcal C$ with a terminal object $\mathbf 1$ is given by a class of maps $\mathcal F$ called fibrations such that:

- Isomorphims are fibrations, $X \to \mathbf{1}$ is a fibration for every X.
- Fibration are closed under composition. Pullbacks of fibrations exists and yield fibrations.

4] André Joyal. "Notes on clans and tribes". In: arXiv preprint arXiv:1710.10238 (2017).

El Mehdi Cherradi CIRM 09/09/2025 8 / 28

Tribes

A clan $\mathcal C$ is a tribe essentially if the underlying type theory supports (intensional) identity types.

Tribes

A clan C is a tribe essentially if the underlying type theory supports (intensional) identity types.

Definition

A tribe C is clan such that:

- Every map factors as an anodyne map followed by a fibration.
- Anodyne maps are closed under pullback along fibrations.

Tribes

A clan C is a tribe essentially if the underlying type theory supports (intensional) identity types.

Definition

A tribe C is clan such that:

- Every map factors as an anodyne map followed by a fibration.
- Anodyne maps are closed under pullback along fibrations.

We will also consider π -tribes, which are essentially tribes such that every fibration admits an *internal product* along any fibration.

Essentially, this means that the underlying type theory also has Π -types.

Canonical comprehension

Given a π -tribe \mathcal{T} , the canonical comprehension structure given by the Grothendieck fibration

$$\operatorname{\textbf{cod}}:\mathcal{T}_{\operatorname{fib}}^{
ightarrow} o\mathcal{T}$$

supports Σ - and Π -types that are stable under pullback up to isomorphism.

Substitution is well-defined and functorial up to isomorphism.

Strictification

A **strictification**^[5] procedure aims at replacing this comprehension category by an equivalent split one, and such that Σ - and Π -types are strictly stable under substitution.

Pictorially:

Isomorphisms — Equalities

^[5] Peter LeFanu Lumsdaine and Michael A Warren. "The local universes model: an overlooked coherence construction for dependent type theories". In: *ACM Transactions on Computational Logic (TOCL)* 16.3 (2015), pp. 1–31.

Coherence in an ∞ -category

Consider a locally cartesian closed $(\infty,1)$ -category $\mathcal C$ (e.g. a quasicategory) with finite limits.

- Pullbacks give a substitution operation which is well-defined and functorial up to (homotopy) equivalence.
- Dependent products are also defined (and pullback-stable) up to equivalence.

El Mehdi Cherradi CIRM 09/09/2025 12 / 28

Rigidification

A **rigidification** procedure aims at replacing C by a π -tribe presenting the same $(\infty,1)$ -category (up to equivalence).

Pictorially:

Equivalences — Isomorphisms

Outline

- The internal language conjectures
- Some context for the problem
 - Tribes and clans
 - Strictification and rigidification
- Establishing the conjecture
 - Working with fibration categories
 - The approach
 - Proofs

DK-equivalences from equivalence of categories

Theorem (Cisinski^[6])

Given fibration categories \mathcal{F}_0 and \mathcal{F}_1 , as well as an exact functor $H: \mathcal{F}_0 \to \mathcal{F}_1$, the following are equivalent:

- H is a DK-equivalence.
- $\mathbf{Ho}(H): \mathbf{Ho}(\mathcal{F}_0) \to \mathbf{Ho}(\mathcal{F}_1)$ is an equivalence of categories.

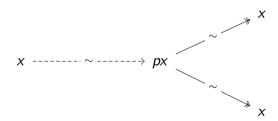
[6] Denis-Charles Cisinski. "Catégories dérivables". In: Bulletin de la société mathématique de France 138.3 (2010), pp. 317–393.

El Mehdi Cherradi CIRM 09/09/2025 15 / 28

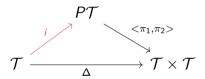
Trb can be equipped with a notion of fibration making it "almost" a fibration category in that, given a tribe \mathcal{T} , there is a canonical tribe $P\mathcal{T}$ whose objects Reed fibrant homotopical spans in \mathcal{T} .

El Mehdi Cherradi 09/09/2025 16 / 28

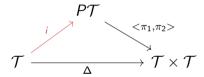
Trb can be equipped with a notion of fibration making it "almost" a fibration category in that, given a tribe \mathcal{T} , there is a canonical tribe $P\mathcal{T}$ whose objects Reed fibrant homotopical spans in \mathcal{T} . For every object x, we may chose a path object px (in \mathcal{T}) for x:



We then have a mapping $i: \mathcal{T} \to P\mathcal{T}$ fitting in a commutative triangle

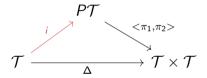


We then have a mapping $i: \mathcal{T} \to P\mathcal{T}$ fitting in a commutative triangle



However, the choice made need not imply that the mapping i is functorial. This is how we fall short of constructing a path object for \mathcal{T} , the only thing left needed for **Trb** to be a fibration category.

We then have a mapping $i: \mathcal{T} \to P\mathcal{T}$ fitting in a commutative triangle

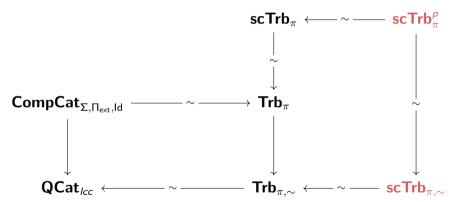


However, the choice made need not imply that the mapping i is functorial. This is how we fall short of constructing a path object for \mathcal{T} , the only thing left needed for **Trb** to be a fibration category.

If $\mathcal T$ is a semi-cubical tribe, taking $Px:=x^{\square^1}$ makes it functorial, and we write $\iota_{\mathcal T}:\mathcal T\to P\mathcal T$

El Mehdi Cherradi 09/09/2025 17 / 28

To prove the second part of the conjecture, our approach is the following:



where the categories in red are the replacement for "naturally occurring" categories in the middle.

• $\mathbf{Trb}_{\pi,\sim}$: tribes equivalent to π -tribes, and morphisms that becomes morphisms of lcc quasicategories upon applyin \mathbf{Ho}_{∞} .

- $\mathbf{Trb}_{\pi,\sim}$: tribes equivalent to π -tribes, and morphisms that becomes morphisms of lcc quasicategories upon applyin \mathbf{Ho}_{∞} .
- **scTrb** $_{\pi}$: semi-cubical π -tribes.

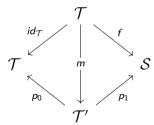
- $\mathbf{Trb}_{\pi,\sim}$: tribes equivalent to π -tribes, and morphisms that becomes morphisms of lcc quasicategories upon applyin \mathbf{Ho}_{∞} .
- **scTrb** $_{\pi}$: semi-cubical π -tribes.
- $\operatorname{scTrb}_{\pi,\sim}$ semi-cubical counterpart of $\operatorname{Trb}_{\pi,\sim}$.

- $\mathbf{Trb}_{\pi,\sim}$: tribes equivalent to π -tribes, and morphisms that becomes morphisms of lcc quasicategories upon applyin \mathbf{Ho}_{∞} .
- **scTrb** $_{\pi}$: semi-cubical π -tribes.
- $\mathbf{scTrb}_{\pi,\sim}$ semi-cubical counterpart of $\mathbf{Trb}_{\pi,\sim}$.
- \mathbf{scTrb}_{π}^{p} : full subcategory of \mathbf{scTrb}_{π} spanned by the tribe \mathcal{T} such that $\iota_{\mathcal{T}}: \mathcal{T} \to P\mathcal{T}$ is π -closed.

The rigidification tool

Lemma

Consider a morphism $f: \mathcal{T} \to \mathcal{S}$ between π -tribes in $\mathbf{scTrb}_{\pi}^{\sim}$. Then, there exists a diagram



where \mathcal{T}' is a π -tribe equivalent to \mathcal{T} and the morphisms $\mathcal{T}' \to \mathcal{T}$ and $\mathcal{T}' \to \mathcal{S}$ are π -closed.

El Mehdi Cherradi CIRM 09/09/2025 20 / 28

The rigidification tool

Proof.

Form the following pullback square:

$$\mathcal{T}' \xrightarrow{u} \mathcal{PS}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{T} \times \mathcal{S} \xrightarrow{f \times id_{\mathcal{S}}} \mathcal{S} \times \mathcal{S}$$

El Mehdi Cherradi CIRM 09/09/2025 21 / 28

$\mathsf{Trb}_{\pi,\sim} o \mathsf{QCat}_{\mathit{lcc}}$

• On hom-spaces, we form the following pullback:

$$Hom_{\mathbf{Trb}_{\pi,\sim}}(X,Y) \longrightarrow Hom_{\mathbf{QCat}_{lcc}}(\mathbf{Ho}_{\infty}(X),\mathbf{Ho}_{\infty}(Y))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
 $Hom_{\mathbf{Trb}}(X,Y) \longrightarrow \sim \longrightarrow Hom_{\mathbf{QCat}_{lex}}(\mathbf{Ho}_{\infty}(X),\mathbf{Ho}_{\infty}(Y))$

• On object, this is not difficult.

El Mehdi Cherradi CIRM 09/09/2025 22 / 28

$scTrb \rightarrow Trb$

Definition

For \mathcal{T} a $(\pi$ -)tribe, we define the category of semi-cubical frames

$$\mathsf{scFr}\mathcal{T} := \mathcal{T}_R^{\square^{op}_\sharp}$$

as the category of Reedy fibrant homotopical semi-cubical diagrams in ${\mathcal T}$

$scTrb \rightarrow Trb$

Definition

For \mathcal{T} a $(\pi$ -)tribe, we define the category of semi-cubical frames

$$\mathsf{scFr}\mathcal{T} := \mathcal{T}_{R}^{\square^{op}_\sharp}$$

as the category of Reedy fibrant homotopical semi-cubical diagrams in ${\mathcal T}$

Proposition

scFrT is a semi-cubical $(\pi$ -)tribe and the evaluation functor

$$\mathbf{ev}_0: \mathit{scFr}\mathcal{T}
ightarrow \mathcal{T}$$

is a DK-equivalence.

$\mathsf{scTrb}^{p}_{\pi} o \mathsf{scTrb}_{\pi}$

Remark

From the type theoretic point-of-view, the functor

 $\mathsf{scFr}: \mathsf{Trb}_\pi o \mathsf{scTrb}_\pi$

is connected to the free parametric^[7] model associated to a given model of MLTT.

Proposition

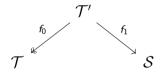
For \mathcal{T} a π -tribe, scFr \mathcal{T} lies in \mathbf{scTrb}_{π}^{p} .

[7] Hugo Moeneclaey. "Parametricity and semi-cubical types". In: 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE. 2021, pp. 1–11.

$$\mathsf{scTrb}^p_\pi o \mathsf{scTrb}_{\pi,\sim}$$

Lemma

Let \mathcal{T} and \mathcal{S} be π -tribes. A morphism $f: \mathcal{T} \to \mathcal{S}$ in $\mathbf{Ho}(\mathbf{scTrb}_{\pi,\sim})$ can be represented by a spans



where \mathcal{T}' is a π -tribe. Here, f_0 is weak equivalence in $\mathbf{scTrb}_{\pi,\sim}$, and f_1 is a map in $\mathbf{scTrb}_{\pi,\sim}$.

El Mehdi Cherradi CIRM 09/09/2025 25 / 28

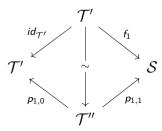
$$\mathsf{scTrb}^p_\pi o \mathsf{scTrb}_{\pi,\sim}$$

Lemma

 $\mathsf{Ho}(\mathsf{scTrb}_\pi) \to \mathsf{Ho}(\mathsf{scTrb}_{\pi,\sim})$ is full.

Proof.

Using the rigidification tool, we have



Thank you for you attention!

References

- Clark Barwick and Daniel M Kan. "Relative categories: another model for the homotopy theory of homotopy theories".
 In: Indagationes Mathematicae 23.1-2 (2012), pp. 42–68.
- [2] Clark Barwick and Daniël M Kan. "A Thomason-like Quillen equivalence between quasi-categories and relative categories". In: arXiv preprint arXiv:1101.0772 (2011).
- [3] Denis-Charles Cisinski. "Catégories dérivables". In: Bulletin de la société mathématique de France 138.3 (2010), pp. 317–393.
- [4] André Joyal. "Notes on clans and tribes".In: arXiv preprint arXiv:1710.10238 (2017)

- [5] Krzysztof Kapulkin and Peter LeFanu Lumsdaine. "The homotopy theory of type theories". In: Advances in Mathematics 337 (2018), pp. 1–38.
- [5] Krzysztof Kapulkin and Karol Szumiło. "Internal languages of finitely complete (∞,1)-categories". In: Selecta Mathematica 25.2 (2019), pp. 1–46.
- 7] Peter LeFanu Lumsdaine and Michael A Warren. "The local universes model: an overlooked coherence construction for dependent type theories". In: ACM Transactions on Computational Logic (TOCL) 16.3 (2015), pp. 1–31.
- Hugo Moeneclaey. "Parametricity and semi-cubical types". In: 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE. 2021, pp. 1–111.