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Motivation
The notion of a well-order is one of the fundamental notions of logic. An ordinal is
essentially a canonical representative of an isomorphism class of well-orders. So we
expect it to be very important both classically and constructively.

Ordinals are also heavily involved in proving some important theorems.

Theorem (Adámek)

Let F be an endofunctor on a cocomplete category C, and α be a limit ordinal. If F
preserves colimits of shape α, then F has an initial algebra.

Theorem (Quillen, Bourke & Garner)

Let C be a locally small and cocomplete category, and α be a limit ordinal. If A is a
small double category over C such that Aa is α-presentable for each object a in A, then
the algebraic weak factorization system cofibrantly generated by A exists.

3 / 20



Ordinals
As it turns out, a pretty good constructive notion of ordinal already exists. It can be
found in:

constructive set theory CZF, as the notion of a transitive set of transitive sets (due
to Powell, I believe).
homotopy type theory, see the Book.
Joyal and Moerdijk’s book on algebraic set theory (what are called the “von
Neumann ordinals” there).

One of points of this presentation is to say that constructive versions of the theorems on
the previous slide can be proved on the basis of this constructive notion of ordinals.

Warning 1: These are different from Paul Taylor’s plumb ordinals.
Warning 2: The classical mathematician should be aware that the following principles
are TABOO:

Linearity: for all ordinals α, β either α ≤ β or β ≤ α.
Least Ordinal Principle: every inhabited class of ordinals has a least element.
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A synthetic account of ordinals
We assume the ordinals Ord come equipped with operations:

s : Ord→ Ord⋃
: Pow(Ord)→ Ord

and an operation

⇓ : Ord→ Pow(Ord)

satisfying:

⇓ (sα) := {α}∪ ⇓ α,
⇓ (
⋃

A) :=
⋃
α∈A

⇓ α.

In addition, we assume the following inference rules:

(Induction)
(∀α)
(
ϕ(α)→ϕ(sα)

)
(∀A)
(
(∀α∈A)ϕ(α)→ϕ(

⋃
A)
)

(∀α)ϕ(α) (Extensionality) ⇓α=⇓β
α=β
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A strict ordering
We write

β < α :≡ β ∈⇓ α.
Then we have:

β < sα ⇔ β = α ∨ β < α.

β <
⋃

A ⇔ (∃α ∈ A) β < α.

We can establish the following properties of < by induction.

(1) ⇓ α is a set for each ordinal α.
(2) < is transitive. (Hint: show γ < β < α⇒ γ < α by induction α.)
(3) The following <-induction scheme is valid:

(∀α)
(

(∀β < α)ψ(β)→ ψ(α)
)

(∀α)ψ(α)

(Hint: prove (∀β < α)ψ(β) by induction on α.)
7 / 20



The inclusion ordering
We can also define the following inclusion ordering:

α ⊆ β :≡ (∀γ)
(
γ < α⇒ γ < β

)
.

Lemma
The relation ⊆ partially orders Ord, and

⋃
computes small suprema with respect to this

ordering.

Proposition

(Ord,⊆, s) is the initial ZF-algebra with a progressive successor (that is, with α ⊆ sα
holding for all α).

Note that the two orderings are related as follows:

α < β ⇐⇒ sα ⊆ β.
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A third ordering
Finally, we define α ≤ β :≡ α < β ∨ α = β.

Lemma
The relation ≤ is a partial order.

The proof of this relies on:

Lemma
There are no ordinals α, β such that α ⊆ β < α holds. In particular, α < α never holds.

Proof.
Show ¬(∃β) (α ⊆ β < α ) by induction on α.

Remark: α ≤ β implies α ⊆ β, but the converse is TABOO.
Remark: In what follows I will always regard ⇓ α as a poset (category) ordered by ≤.
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Adámek’s fixed point theorem

In what follows I will give a constructive account of:

Theorem (Adámek)

Let F be an endofunctor on a cocomplete category C, and α be a limit ordinal. If F
preserves colimits of shape α, then F has an initial algebra.

With a slightly different presentation, this proof can be found in the work of Pitts &
Steenkamp. Indeed:

I will use the language of algebraic chains (wth the caveat that constructively they
are not chains).

I have changed “inflationary iteration” to “progressive iteration”.
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Algebraic chain
Suppose F : C → C is an endofunctor on a category C with a choice of small colimits.

We define an algebraic chain of length α to be a pair (X , x) consisting of:

(a) a functor X :⇓ α→ C,

(b) for any γ < β < α a map xβγ : FXγ → Xβ in C,

such that for all δ < γ < β the two diagrams on the left commute:

FXγ Xβ

FXδ

xβγ

FXγ
δ

xβδ

Xβ

FXδ Xγ
xγδ

xβδ
Xβ
γ

FXγ FYγ

Xβ Yβ

xβγ

Fϕγ

yβ
γ

ϕβ

A morphism of chains ϕ : (X , x)→ (Y , y) is a natural transformation ϕ : X → Y
making the diagram on the right commute for any γ < β < α.
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Progressive iteration

Lemma
Let (X , x) be an algebraic chain of length α. If β ≤ α, then there is a diagram ⇓ β → C
obtained by sending γ to FXγ and δ < γ to FX γ

δ . If β < α, then we have a cocone on
this diagram given by (Xβ, x

β
γ : FXγ → Xβ).

Definition
An algebraic chain (X , x) will be called the progressive iteration of F over α if for each
β < α the cocone from the lemma above is the chosen colimit.

Then one proves:

1 The progressive iteration of F over α is initial in the category of algebraic chains of
length α.

2 For each ordinal α there is exists a unique progessive iteration of F over α.
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Constructive initial algebra theorem

Definition
An ordinal κ will be called a size if for each α, β < κ there exists a γ < κ such that
α < γ and β < γ.

Theorem
Let C be a cocomplete category and κ be a size. If F : C → C is an endofunctor
preserving colimits of shape κ, then the initial F -algebra exists.

Proof.
Let (X , x) be the unique progressive iteration of F over κ. Then I = colimX can be
equipped with structure of an F -algebra which will make it initial in the category of
F -algebras.

14 / 20



Section 4

A constructive small object argument

15 / 20



Variations
By modifying the notion of progressive iteration we can show the following variations.

Theorem
Let C be a cocomplete category and κ be a size. If F : C → C is a pointed endofunctor
preserving colimits of shape κ, then the initial pointed F -algebra exists.

Theorem
Let C be a cocomplete category and κ be a size. If F : C → C is a special endofunctor
preserving colimits of shape κ, then the initial special F -algebra exists.

Here we assume we have natural transformations η : 1→ F and λ : G → FF and
µ : G → F and the following commutative diagrams for algebras (X , x : FX → X ):

X FX

X

ηX

1
x

GX FFX FX

FX X

λX

µX

Fx

x

x
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Constructive small object argument
The latter can be used to show the following theorem (jww Paul Seip and John Bourke).

Theorem (Constructive small object argument)

Let C be a locally small and cocomplete category, and κ be a size. If A is a small double
category over C such that Aa is κ-presentable for each object a in A, then the algebraic
weak factorisation system cofibrantly generated by A exists.

Here we have used the following definition:

Definition
Let C be a category and κ be a size. We say that an object A in C is κ-presentable) if

Hom(A,−) : C → Sets

preserves κ-filtered colimits.
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The need for good WISC-y axioms

However, we need a bit of choice to apply this result.

Theorem
In classical Zermelo-Fraenkel set theory ZF (without choice), it cannot be proved that
there is a cardinal κ such that N is κ-presentable in the category of sets. Indeed, there
is a small double category over sets in which Aa is always countable and which cannot
be proved to generate an algebraic weak factorisation system in ZF.

Conjecture
Using WISC, we can show that every set is κ-presentable for some size κ, so then we
should be able to avoid these issues.
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Conclusion

A satisfying theory of ordinals supporting useful transfinite arguments can be
developed.

In the future it might be good to see if we can constructivise Kelly and write a
paper on “A unified constructive treatment of transfinite constructions for free
algebras, free monoids, colimits, associated sheaves, and so on”

And the same applies to the literature on κ-presentable and κ-accessible categories!

Thank you for your attention!
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